Exploring conformal invariance with hierarchical models

Abdelmalek Abdesselam
Mathematics Department, University of Virginia

AQFP Seminar, Oct 14, 2021

2d Conformal Field Theory, a success story:

Ising model: Construction of the CFT from first principles, i.e., microscopic description, and proof of conformal invariance. Work of Smirnov, Dubedat, Chelkak, Hongler, Izyurov,... Universality, inclusion of next-to-nearest neighbor interactions etc. Work of Giuliani, Mastropietro, Greenblatt, Antinucci,... .

Liouville CFT: Work of Duplantier, Sheffield, David, Kupiainen, Rhodes, Vargas,...
multiple SLE based models: Work of Kytölä, Peltola, Flores, Kleban, Wu,...

This talk exclusively focuses on CFT in dimension $d \geq 3$, in Euclidean signature, and on simplified toy models which may help in exploring this (mathematical) terra incognita.

The Möbius group of global conformal transformations:

By a theorem of Liouville, for $d \geq 3$, conformal transformations of \mathbb{R}^{d} reduce to global conformal maps which form a group: the Möbius group $\mathcal{M}\left(\mathbb{R}^{d}\right)$.
Let $\widehat{\mathbb{R}^{d}}=\mathbb{R}^{d} \cup\{\infty\} \simeq \mathbb{S}^{d}$. One-point compactification identified with sphere via stereographic projection.
Definition 1: The Möbius group $\mathcal{M}\left(\mathbb{R}^{d}\right)$ is the group of bijective transformations of $\widehat{\mathbb{R}^{d}}$ generated by isometries, dilations and the unit sphere inversion $J(x)=|x|^{-2} x$. Equivalent definition 2: The Möbius group $\mathcal{M}\left(\mathbb{R}^{d}\right)$ is the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

Namely, it is the group of bijections $\widehat{\mathbb{R}^{d}} \rightarrow \widehat{\mathbb{R}^{d}}$ which preserve the cross-ratio for all quadruples of distinct points in $\widehat{\mathbb{R}^{d}}$.

A touristic view of AdS/CFT:

Conformal ball model: $\widehat{\mathbb{R}^{d}} \simeq \mathbb{S}^{d}$ seen as boundary of \mathbb{B}^{d+1} with metric $d s=\frac{2|d x|}{1-|x|^{2}}$.

Half-space model: \mathbb{R}^{d} seen as boundary of $\mathbb{H}^{d+1}=\mathbb{R}^{d} \times(0, \infty)$ with metric $d s=\frac{|d x|}{x_{d+1}}$.

Key geometric fact: The is a bijection $f \in \mathcal{M}\left(\mathbb{R}^{d}\right) \leftrightarrow$ hyperbolic isometry of the interior \mathbb{B}^{d+1} or \mathbb{H}^{d+1}, the Euclidean AdS space.
The conformal map f simply is the extention by continuity of the hyperbolic isometry to the boundary.

A scalar field \mathcal{O} of scaling dimension Δ in a CFT on \mathbb{R}^{d} has pointwise correlations which satisfy
$\left\langle\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n} \left\lvert\, J_{f}\left(x_{i}\right)^{\left\lvert\, \frac{\Delta}{d}\right.}\right.\right) \times\left\langle\mathcal{O}\left(f\left(x_{1}\right)\right) \cdots \mathcal{O}\left(f\left(x_{n}\right)\right)\right\rangle$
for all $f \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ and all collection of distinct points in $\mathbb{R}^{d} \backslash\left\{f^{-1}(\infty)\right\}$. Here, $J_{f}(x)$ denotes the Jacobian of f at x. The AdS/CFT correspondence, discovered by Maldacena 1997 and made more precise by Gubser, Klebanov, Polyakov and Witten 1998, postulates a relation of the form:

$$
\left\langle e^{\int_{\mathbb{R}^{d}} j(x) \mathcal{O}(x) d^{d} x}\right\rangle_{\mathrm{CFT}}=e^{-\int\left[\phi_{\mathrm{exx}}\right]}
$$

where $S[\phi]$ is an action for a field $\phi\left(x, x_{d+1}\right)$ on AdS space and $\phi_{\text {ext }}$ makes it extremal for a boundary condition $\phi\left(x, x_{d+1}\right) \sim\left(x_{d+1}\right)^{d-\Delta} j(x)$ when $x_{d+1} \rightarrow 0$,

AdS/CFT or holographic correspondence not yet known explicitly, i.e., exact $S[\phi]$ still mysterious. However, physicists have been experimenting with toy actions of the form:
$\int_{\mathbb{R}^{d} \times(0, \infty)} d^{d} x d x_{d+1} \sqrt{\operatorname{det} g_{\mu \nu}}\left\{\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{2} m^{2} \phi^{2}+\cdots\right\}$
where m^{2} is related to Δ and is allowed to be (not too) negative.
This gives an expansion for connected CFT correlations in terms of tree-level Feynman diagrams (Witten diagrams). The simplest "Mercedes logo" 3-point Witten diagram reproduces the correct CFT prediction

$$
\frac{O(1)}{\left|x_{1}-x_{2}\right|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left|x_{1}-x_{3}\right|^{\Delta_{1}+\Delta_{3}-\Delta_{2}}\left|x_{2}-x_{3}\right|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}}
$$

for $\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle$ by a calculation of Freedman, Mathur, Matusis and Rastelli 1999.

A (kinda) trivial example: a free CFT

Borel probability measure μ on $S^{\prime}\left(\mathbb{R}^{d}\right)$ given by centered Gaussian measure with covariance

$$
C(f, g)=\int_{\mathbb{R}^{d}} \frac{d^{d} \xi}{(2 \pi)^{d}} \frac{\widehat{f}(\xi) \widehat{g}(\xi)}{|\xi|^{d-2 \Delta}}
$$

with $\Delta \in(0, d / 2)$.
Formally, given by path integral $\int D \phi \ldots e^{-S(\phi)}$ with action

$$
S(\phi)=\frac{1}{2}\left\langle\phi,(-\Delta)^{\alpha} \phi\right\rangle_{L^{2}}
$$

with $\alpha=\frac{d}{2}-\Delta$.
Moments (distributions on $\mathbb{R}^{\text {nd }}$) are $L^{1, l o c}$ and given by integration against n-point functions $\left\langle\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right\rangle$

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\frac{\kappa}{\left|x_{1}-x_{2}\right|^{2 \Delta}} \\
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle\left\langle\phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \\
+\left\langle\phi\left(x_{1}\right) \phi\left(x_{3}\right)\right\rangle\left\langle\phi\left(x_{2}\right) \phi\left(x_{4}\right)\right\rangle+\left\langle\phi\left(x_{1}\right) \phi\left(x_{4}\right)\right\rangle\left\langle\phi\left(x_{2}\right) \phi\left(x_{3}\right)\right\rangle
\end{gathered}
$$

etc. by Isserlis-Wick formula.
Remark 1: The CFT is unitary and satisfies
Osterwalder-Schrader positivity for $\Delta \geq \frac{d-2}{2}$.
Remark 2: This is not a trivial example from the point of view of the conformal bootstrap and the AdS/CFT correspondence.

Proof of conformal invariance: Showing

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\frac{\Delta}{d}}\right) \times\left\langle\phi\left(f\left(x_{1}\right)\right) \cdots \phi\left(f\left(x_{n}\right)\right)\right\rangle
$$

reduces to the $n=2$ case. For f a Euclidean isometry of \mathbb{R}^{d} or a dilation: trivial. Only need to check the case of unit sphere inversion $f=J$.

The Jacobian matrix is $|x|^{-2}\left(\delta_{i j}-2 x_{i} x_{j}|x|^{-2}\right)$ and the local rescaling factor is $\left|J_{J}(x)\right|^{\frac{1}{d}}=|x|^{-2}$. Result then follows from elementary identity

$$
|J(x)-J(y)|=\frac{|x-y|}{|x||y|}
$$

QED.

The good news:

All of the above makes sense for the hierarchical model, i.e., p-adic analogue.
See in particular:

- Melzer, IJMP 1989.
- Lerner, Missarov, LMP 1991.
- Gubser et al. "p-Adic AdS/CFT", CMP 2017.
- Gubser et al. " $O(N)$ and $O(N)$ and $O(N)$ ", JHEP 2017.

The calculations of the last reference for scaling dimensions of Φ and ϕ^{2}, for $N=1$ in hierarchical case were made nonperturbatively rigorous in:
"Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions", arXiv 2013, by A.A., Ajay Chandra (Imperial College), Gianluca Guadagni (UVa).

The hierarchical or p-adic continuum:

Let p be a fixed integer ≥ 2.
For $k \in \mathbb{Z}$, let \mathbb{L}_{k} be the set of cubes in \mathbb{R}^{d} of the form

$$
a+p^{k}\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}
$$

with $a \in p^{k} \mathbb{Z}^{d}$. For fixed k, these cubes form a partition of \mathbb{R}^{d}. If p is odd, and one considers all of the cubes in $\cup_{k \in \mathbb{Z}} \mathbb{L}_{k}$ then these cubes are nested.

Hence $\mathbb{T}:=\cup_{k \in \mathbb{Z}} \mathbb{L}_{k}$ naturally has the structure of a doubly infinite tree which is organized into layers or generations \mathbb{L}_{k}.

Now forget about \mathbb{R}^{d} and just remember the tree. No harm in allowing p even now. Secret further (purely esthetic) hypothesis: restrict to p a prime number.

Picture for $d=1, p=2$

The hierarchical continuum $\mathbb{Q}_{p}^{d}:=$ leafs at infinity " $\mathbb{L}_{-\infty}$ ". More precisely, these leafs at infinity are the infinite bottom-up paths in the tree. \mathbb{T}, with the graph distance, will play the role of hyperbolic space \mathbb{H}^{d+1} of AdS bulk space.

A path representing an element $x \in \mathbb{Q}_{p}^{d}$

A point $x=\in \mathbb{Q}_{p}^{d}$ is encoded by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$, $a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
a_{n} represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n}.

Moreover, rescaling is defined as follows.
If $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x:=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Likewise $p^{-1} x$ is downward shift, and so on for the definition of $p^{k} x, k \in \mathbb{Z}$.

Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, their distance is defined as $|x-y|_{p}:=p^{k}$ where k is the depth where the two paths merge. Just a notation.

Keep in mind that $|p x-p y|_{p}=p^{-1}|x-y|_{p}$.

Closed balls Δ of radius p^{k} correspond to the nodes $\mathbf{x} \in \mathbb{L}_{k}$

Lebesgue measure:

Metric space $\mathbb{Q}_{p}^{d} \rightarrow$ Borel σ-algebra \rightarrow Lebesgue (or additive Haar) measure $d^{d} x$ which gives a volume $p^{d k}$ to closed balls of radius p^{k}.

The hierarchical unit lattice:

Truncate the tree at level zero and take $\mathbb{L}:=\mathbb{L}_{0}$. Using the identification of nodes with balls, define the hierarchical distance as

$$
d(\mathbf{x}, \mathbf{y})=\inf \left\{|x-y|_{p} \mid x \in \mathbf{x}, y \in \mathbf{y}\right\}
$$

This is the setting used since Dyson in the statistical mechanics literature on hierarchical models.

The massless Gaussian measure:

To every group of offsprings G of a vertex $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $\left(\zeta_{\mathrm{x}}\right)_{\mathrm{x} \in \mathrm{G}}$ with $p^{d} \times p^{d}$ covariance matrix made of $1-p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different groups are independent. We have $\sum_{x \in G} \zeta_{x}=0$ a.s.

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let anc $k_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.
Ditto for $\operatorname{anc}_{k^{\prime}}(x)$ when $x \in \mathbb{Q}_{p}^{d}$.
The massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ of scaling dimention [ϕ] is given by

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\text {anc }_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2[\phi]}}
\end{aligned}
$$

This is heuristic since ϕ is not well-defined in a pointwise manner. We need random Schwartz(-Bruhat) distributions on \mathbb{Q}_{p}^{d}.

I will now drop the p from $|\cdot|_{p}$.

Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant.
Define $S\left(\mathbb{Q}_{p}^{d}\right)$ as the space of compactly supported smooth functions.
Take locally convex topology generated by the set of all semi-norms on $S\left(\mathbb{Q}_{p}^{d}\right)$.

Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology. $\Omega:=S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is a Polish space.

The p-adic CFT toy model:

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\ell}$ zooming-out factor for RG
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
The regularized Gaussian measure μC_{r} is the law of

$$
\phi_{r}(x)=\sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

Sample fields are true fonctions that are locally constant on scale L^{r}. These measures are scaled copies of each other. If the law of $\phi(\cdot)$ is μc_{0}, then that of $L^{-r[\phi]} \phi\left(L^{r} \cdot\right)$ is $\mu_{c_{r}}$.

The free CFT first as a warm up:

The centered Gaussian measure $\mu_{C_{-\infty}}$ on $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ is the weak limit, when $r \rightarrow-\infty$, of the Borel probability measures μc_{r} which are supported on smooth fields $\phi(x)$ where smooth means locally constant. The scale of constancy is L^{r}, analogue of lattice mesh.
The two point function, for $x \neq y \in \mathbb{Q}_{p}^{3}$ is

$$
\langle\phi(x) \phi(y)\rangle_{\mu_{C_{-\infty}}}=\frac{\kappa}{|x-y|^{2[\phi]}} .
$$

and higher correlation functions are given by the Isserlis-Wick formula.

Proposition: $\mu_{C_{-\infty}}$ is a CFT.
But, but,..., what does conformal invariance mean for these funny hierarchical models???

The p-adic Möbius group :

From old work by Lerner and Missarov (early 1990's, i.e., before AdS/CFT !).
Define the one-point compactification $\widehat{\mathbb{Q}_{p}^{d}}=\mathbb{Q}_{p}^{d} \cup\{\infty\}$.
Definition 1: The p-adic Möbius group $\mathcal{M}\left(\mathbb{Q}_{p}^{d}\right)$ is the group of bijective transformations of $\widehat{\mathbb{Q}_{p}^{d}}$ generated by (ultrametric) isometries, dilations $x \mapsto p^{k} x, k \in \mathbb{Z}$ and inversion $J(x)=|x|_{p}^{2} x$. Here $|x|_{p}:=|x-0|_{p}$ where 0 is a preferred point in \mathbb{Q}_{p}^{d}, e.g., all-left path in the tree.
Equivalent definition 2: Can also define the absolute cross-ratio for the ultrametric distance. $\mathcal{M}\left(\mathbb{Q}_{p}^{d}\right)$ then is the group of transformations of $\widehat{\mathbb{Q}_{p}^{d}}=\mathbb{Q}_{p}^{d} \cup\{\infty\}$ which preserve this cross-ratio.

Mumford-Manin-Drinfeld Lemma

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|}=p^{-\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)}
$$

where $\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)$ is the number of common edges for the two bi-infinite paths $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, counted positively if orientations agree and negatively otherwise.

From lemma, one can deduce a bijective correpondence: $f \in \mathcal{M}\left(\mathbb{Q}_{p}^{3}\right) \leftrightarrow$ hyperbolic isometry of the interior \mathbb{T}.

The tree, once again.

Conformal invariance at the level of n-point functions is defined exactly as before but with the local rescaling factor

$$
\left|J_{f}(x)\right|^{\frac{1}{d}}
$$

now replaced by the Radon-Nikodym derivative formula

$$
\left(\frac{d\left(\left(f^{-1}\right)_{*} m\right)}{d m}(x)\right)^{\frac{1}{d}}
$$

where m is the previous Lebesgue measure on \mathbb{Q}_{p}^{d}.
Now on to the proof of conformal invariance for the free measure $\mu_{C_{-\infty}}$ on $S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$.

Proof of conformal invariance: Showing

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\frac{\Delta}{d}}\right) \times\left\langle\phi\left(f\left(x_{1}\right)\right) \cdots \phi\left(f\left(x_{n}\right)\right)\right\rangle
$$

reduces to the $n=2$ case. For f an isometry of \mathbb{Q}_{p}^{d} or a dilation: trivial. Only need to check the case of unit sphere inversion $f=J$.
The local rescaling factor is $\left|J_{J}(x)\right|^{\frac{1}{d}}=|x|^{-2}$. Result then follows from elementary identity

$$
|J(x)-J(y)|=\frac{|x-y|}{|x||y|}
$$

QED.

Fix the dimensionless parameters g, μ and let $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$. Same as strict scaling limit of fixed critical probability measure on unit lattice. Bare/dimensionful couplings g_{r}, μ_{r} go to ∞.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right)$, IR (or volume) cut-off.
Let

$$
V_{r, s}(\phi)=\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}(x)\right\} d^{3} x
$$

where : $\phi^{k}:_{r}$ is Wick ordering using $d \mu c_{r}$.
Define the probability measure

$$
d \nu_{r, s}(\phi)=\frac{1}{\mathcal{Z}_{r, s}} e^{-V_{r, s}(\phi)} d \mu_{c_{r}}(\phi) .
$$

Let $\phi_{r, s}$ be the random distribution in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define the squared field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is a deterministic function (al) of $\phi_{r, s}$, with values in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$, given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=\left(Z_{2}\right)^{r} \int_{\mathbb{Q}_{r}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: r(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

for suitable parameters Z_{2}, Y_{0}, Y_{2}. We also need a Y_{1}.
Our main result concerns the limit law of the pair $\left(Y_{1} \phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ when $r \rightarrow-\infty, s \rightarrow \infty$ (in any order).
For the precise statement we need the approximate fixed point value

$$
\bar{g}_{*}=\frac{p^{\epsilon}-1}{36 L^{\epsilon}\left(1-p^{-3}\right)} .
$$

Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of ($Y_{1} \phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right)$) converge weakly and in the sense of moments to that of a pair ($\phi, N\left[\phi^{2}\right]$) such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.
(2) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0$ i.e., ϕ is non-Gaussian. Here, $\mathbf{1}_{\mathbb{Z}_{p}^{3}}$ denotes the indicator function of $\bar{B}(0,1)$.
(3) $\left\langle N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{\mathbb{Z}}}\right)\right\rangle^{\mathrm{T}}=1$.
(4) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)^{2}\right\rangle=1$.

The mixed correlation functions satisfy, in the sense of distributions,

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

For our hierarchical version of the 3D fractional ϕ^{4} model we also proved $\left[\phi^{2}\right]-2[\phi]=\frac{1}{3} \epsilon+o(\epsilon)$.
This was predicted by Wilson in "Renormalization of a scalar field theory in strong coupling", PRD 1972.
This is also what is expected for the Euclidean model on \mathbb{R}^{3}.
Not too far, if one boldly extrapolates to $\epsilon=1$, from the most precise available estimates concerning the short range 3D Ising model: $\left[\phi^{2}\right]-2[\phi]=0.376327 \ldots$ (JHEP 2016 by Kos, Poland, Simmons-Duffin and Vichi, using conformal bootstrap).

We also proved the law $\nu_{\phi \times \phi^{2}}$ of $\left(\phi, N\left[\phi^{2}\right]\right)$, is independent of g in the interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$. This also holds if one also adds $\phi^{6}, \phi^{8}, \ldots$ terms in the potential, with small couplings. We proved strong local universality for a non-Gaussian scaling limit.

Theorem 2: A.A.-Chandra-Guadagni 2013

$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{\left.|x-y|^{2\left[\phi^{2}\right]}\right]}
\end{gathered}
$$

Note that $2\left[\phi^{2}\right]=3-\frac{1}{3} \epsilon+o(\epsilon) \rightarrow$ still $L^{1, \text { loc }}$!

Theorem 3: A.A., May 2015

Use ψ_{i} to denote the scaling limits ϕ or $N\left[\phi^{2}\right]$. Then, for all mixed correlation \exists a smooth (i.e., locally constant) fonction $\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle$ on $\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash$ Diag which is locally integrable (on the big diagonal Diag) and such that

$$
\begin{aligned}
& \mathbb{E} \psi_{1}\left(f_{1}\right) \cdots \psi_{n}\left(f_{n}\right)= \\
& \quad \int_{\left(\mathbb{Q}_{)^{3}}\right) \backslash \text { Diag }}\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle f_{1}\left(z_{1}\right) \cdots f_{n}\left(z_{n}\right) d^{3} z_{1} \cdots d^{3} z_{n}
\end{aligned}
$$

for all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{Q}_{p}^{3}\right)$.

This hinges on showing the BNNFB (basic nearest neighbor factorized bound) of A.A., "A Second-Quantized Kolmogorov-Chentsov Theorem via the Operator Product Expansion", CMP 2020. The BNNFB is

$$
\left|\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle\right| \leq O(1) \times \prod_{i=1}^{n} \frac{1}{\mid z_{i}-\text { n.n. }\left.\right|^{\left[\psi_{i}\right]}}
$$

when z_{1}, \ldots, z_{n} are confined to a compact set.
This follows from the use of the SDRG (space-dependent renormalization group) to derive an explicit representation of pointwise correlations in terms of very close analogues of tree Witten diagrams. Hence, the emergent connection to the AdS/CFT correspondence.

Thank you for your attention.

