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2d Conformal Field Theory, a success story:

Ising model: Construction of the CFT from first principles,
i.e., microscopic description, and proof of conformal invariance.
Work of Smirnov, Dubedat, Chelkak, Hongler, Izyurov,. . .
Universality, inclusion of next-to-nearest neighbor interactions
etc. Work of Giuliani, Mastropietro, Greenblatt, Antinucci,. . .

Liouville CFT: Work of Duplantier, Sheffield, David,
Kupiainen, Rhodes, Vargas,. . .

multiple SLE based models: Work of Kytölä, Peltola,
Flores, Kleban, Wu,. . .

. . .

This talk exclusively focuses on CFT in dimension
d ≥ 3, in Euclidean signature, and on simplified toy
models which may help in exploring this (mathematical)
terra incognita.



The Möbius group of global conformal transformations:

By a theorem of Liouville, for d ≥ 3, conformal
transformations of Rd reduce to global conformal maps which
form a group: the Möbius group M(Rd).

Let R̂d = Rd ∪ {∞} ' Sd . One-point compactification
identified with sphere via stereographic projection.

Definition 1: The Möbius group M(Rd) is the group of

bijective transformations of R̂d generated by isometries,
dilations and the unit sphere inversion J(x) = |x |−2x .
Equivalent definition 2: The Möbius group M(Rd) is the
invariance group of the absolute cross-ratio

CR(x1, x2, x3, x4) =
|x1 − x3| |x2 − x4|
|x1 − x4| |x2 − x3|

.

Namely, it is the group of bijections R̂d → R̂d which preserve

the cross-ratio for all quadruples of distinct points in R̂d .



A touristic view of AdS/CFT:

Conformal ball model: R̂d ' Sd seen as boundary of Bd+1

with metric ds = 2|dx |
1−|x |2 .

Half-space model: Rd seen as boundary of
Hd+1 = Rd × (0,∞) with metric ds = |dx |

xd+1
.

Key geometric fact: The is a bijection f ∈M(Rd) ↔
hyperbolic isometry of the interior Bd+1 or Hd+1, the
Euclidean AdS space.

The conformal map f simply is the extention by continuity of
the hyperbolic isometry to the boundary.



A scalar field O of scaling dimension ∆ in a CFT on Rd has
pointwise correlations which satisfy

〈O(x1) · · · O(xn)〉 =

(
n∏

i=1

|Jf (xi)|
∆
d

)
×〈O(f (x1)) · · · O(f (xn))〉

for all f ∈M(Rd) and all collection of distinct points in
Rd\{f −1(∞)}. Here, Jf (x) denotes the Jacobian of f at x .
The AdS/CFT correspondence, discovered by Maldacena 1997
and made more precise by Gubser, Klebanov, Polyakov and
Witten 1998, postulates a relation of the form:〈

e
∫
Rd j(x)O(x)ddx

〉
CFT

= e−S[φext]

where S [φ] is an action for a field φ(x , xd+1) on AdS space
and φext makes it extremal for a boundary condition
φ(x , xd+1) ∼ (xd+1)d−∆j(x) when xd+1 → 0.



AdS/CFT or holographic correspondence not yet known
explicitly, i.e., exact S [φ] still mysterious. However, physicists
have been experimenting with toy actions of the form:∫
Rd×(0,∞)

ddx dxd+1

√
detgµν

{
1

2
gµν∂µφ∂νφ +

1

2
m2φ2 + · · ·

}
where m2 is related to ∆ and is allowed to be (not too)
negative.
This gives an expansion for connected CFT correlations in
terms of tree-level Feynman diagrams (Witten diagrams). The
simplest “Mercedes logo” 3-point Witten diagram reproduces
the correct CFT prediction

O(1)

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2|x2 − x3|∆2+∆3−∆1

for 〈O1(x1)O2(x2)O3(x3)〉 by a calculation of Freedman,
Mathur, Matusis and Rastelli 1999.



A (kinda) trivial example: a free CFT

Borel probability measure µ on S ′(Rd) given by centered
Gaussian measure with covariance

C (f , g) =

∫
Rd

ddξ

(2π)d
f̂ (ξ)ĝ(ξ)

|ξ|d−2∆

with ∆ ∈ (0, d/2).
Formally, given by path integral

∫
Dφ . . . e−S(φ) with action

S(φ) =
1

2
〈φ, (−∆)αφ〉L2

with α = d
2
−∆.

Moments (distributions on Rnd) are L1,loc and given by
integration against n-point functions 〈φ(x1) . . . φ(xn)〉



〈φ(x1)φ(x2)〉 =
κ

|x1 − x2|2∆

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈φ(x1)φ(x2)〉 〈φ(x3)φ(x4)〉

+〈φ(x1)φ(x3)〉 〈φ(x2)φ(x4)〉+ 〈φ(x1)φ(x4)〉 〈φ(x2)φ(x3)〉

etc. by Isserlis-Wick formula.

Remark 1: The CFT is unitary and satisfies
Osterwalder-Schrader positivity for ∆ ≥ d−2

2
.

Remark 2: This is not a trivial example from the point of view
of the conformal bootstrap and the AdS/CFT correspondence.



Proof of conformal invariance: Showing

〈φ(x1) · · ·φ(xn)〉 =

(
n∏

i=1

|Jf (xi)|
∆
d

)
× 〈φ(f (x1)) · · ·φ(f (xn))〉

reduces to the n = 2 case. For f a Euclidean isometry of Rd

or a dilation: trivial. Only need to check the case of unit
sphere inversion f = J .

The Jacobian matrix is |x |−2(δij − 2xixj |x |−2) and the local

rescaling factor is |JJ(x)| 1d = |x |−2. Result then follows from
elementary identity

|J(x)− J(y)| =
|x − y |
|x | |y |

QED.



The good news:

All of the above makes sense for the hierarchical model, i.e.,
p-adic analogue.
See in particular:
• Melzer, IJMP 1989.
• Lerner, Missarov, LMP 1991.
• Gubser et al. “p-Adic AdS/CFT”, CMP 2017.
• Gubser et al. “O(N) and O(N) and O(N)”, JHEP 2017.

The calculations of the last reference for scaling dimensions of
Φ and Φ2, for N = 1 in hierarchical case were made
nonperturbatively rigorous in:

“Rigorous quantum field theory functional integrals over the
p-adics I: anomalous dimensions”, arXiv 2013, by A.A., Ajay
Chandra (Imperial College), Gianluca Guadagni (UVa).



The hierarchical or p-adic continuum:

Let p be a fixed integer ≥ 2.
For k ∈ Z, let Lk be the set of cubes in Rd of the form

a + pk
[
−1

2
,

1

2

)d

with a ∈ pkZd . For fixed k , these cubes form a partition of
Rd . If p is odd, and one considers all of the cubes in ∪k∈ZLk

then these cubes are nested.

Hence T := ∪k∈ZLk naturally has the structure of a doubly
infinite tree which is organized into layers or generations Lk .

Now forget about Rd and just remember the tree. No harm in
allowing p even now. Secret further (purely esthetic)
hypothesis: restrict to p a prime number.



Picture for d = 1, p = 2



The hierarchical continuum Qd
p := leafs at infinity “L−∞”.

More precisely, these leafs at infinity are the infinite bottom-up
paths in the tree. T, with the graph distance, will play the role
of hyperbolic space Hd+1 of AdS bulk space.

A path representing an element x ∈ Qd
p



A point x =∈ Qd
p is encoded by a sequence (an)n∈Z,

an ∈ {0, 1, . . . , p − 1}d .

an represents the local coordinates for a cube of L−n−1 inside
a cube of L−n.



Moreover, rescaling is defined as follows.
If x = (an)n∈Z then px := (an−1)n∈Z, i.e., upward shift.

Likewise p−1x is downward shift, and so on for the definition
of pkx , k ∈ Z.



Distance:

If x , y ∈ Qd
p , their distance is defined as |x − y |p := pk where

k is the depth where the two paths merge. Just a notation.

Keep in mind that |px − py |p = p−1|x − y |p .



Closed balls ∆ of radius pk correspond to the nodes x ∈ Lk



Lebesgue measure:

Metric space Qd
p → Borel σ-algebra → Lebesgue (or additive

Haar) measure ddx which gives a volume pdk to closed balls
of radius pk .

The hierarchical unit lattice:
Truncate the tree at level zero and take L := L0. Using the
identification of nodes with balls, define the hierarchical
distance as

d(x, y) = inf{|x − y |p | x ∈ x, y ∈ y} .

This is the setting used since Dyson in the statistical
mechanics literature on hierarchical models.



The massless Gaussian measure:

To every group of offsprings G of a vertex z ∈ Lk+1 associate
a centered Gaussian random vector (ζx)x∈G with pd × pd

covariance matrix made of 1− p−d ’s on the diagonal and
−p−d ’s everywhere else. We impose that Gaussian vectors
corresponding to different layers or different groups are
independent. We have

∑
x∈G ζx = 0 a.s.



The ancestor function: for k < k ′, x ∈ Lk , let anck ′(x) denote
the ancestor in Lk ′ .
Ditto for anck ′(x) when x ∈ Qd

p .
The massless Gaussian field φ(x), x ∈ Qd

p of scaling dimention
[φ] is given by

φ(x) =
∑
k∈Z

p−k[φ]ζanck (x)

〈φ(x)φ(y)〉 =
c

|x − y |2[φ]

This is heuristic since φ is not well-defined in a pointwise
manner. We need random Schwartz(-Bruhat) distributions on
Qd

p .

I will now drop the p from | · |p.



Test functions:

f : Qd
p → R is smooth if it is locally constant.

Define S(Qd
p) as the space of compactly supported smooth

functions.
Take locally convex topology generated by the set of all
semi-norms on S(Qd

p).

Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).

S(Qd
p) ' ⊕NR .

Thus
S ′(Qd

p) ' RN

with product topology. Ω := S ′(Qd
p) is a Polish space.



The p-adic CFT toy model:

d = 3, [φ] = 3−ε
4

, L = p` zooming-out factor for RG

r ∈ Z UV cut-off, r → −∞

s ∈ Z IR cut-off, s →∞

The regularized Gaussian measure µCr is the law of

φr (x) =
∞∑

k=`r

p−k[φ]ζanck (x)

Sample fields are true fonctions that are locally constant on
scale Lr . These measures are scaled copies of each other.

If the law of φ(·) is µC0 , then that of L−r [φ]φ(Lr ·) is µCr .



The free CFT first as a warm up:
The centered Gaussian measure µC−∞ on S ′(Q3

p) is the weak
limit, when r → −∞, of the Borel probability measures µCr

which are supported on smooth fields φ(x) where smooth
means locally constant. The scale of constancy is Lr , analogue
of lattice mesh.
The two point function, for x 6= y ∈ Q3

p is

〈φ(x)φ(y)〉µC−∞ =
κ

|x − y |2[φ]
.

and higher correlation functions are given by the Isserlis-Wick
formula.

Proposition: µC−∞ is a CFT.

But, but,. . . , what does conformal invariance mean for these
funny hierarchical models???



The p-adic Möbius group :

From old work by Lerner and Missarov (early 1990’s, i.e.,
before AdS/CFT !).

Define the one-point compactification Q̂d
p = Qd

p ∪ {∞}.

Definition 1: The p-adic Möbius group M(Qd
p) is the group

of bijective transformations of Q̂d
p generated by (ultrametric)

isometries, dilations x 7→ pkx , k ∈ Z and inversion
J(x) = |x |2px . Here |x |p := |x − 0|p where 0 is a preferred
point in Qd

p , e.g., all-left path in the tree.

Equivalent definition 2: Can also define the absolute
cross-ratio for the ultrametric distance. M(Qd

p) then is the

group of transformations of Q̂d
p = Qd

p ∪ {∞} which preserve
this cross-ratio.



Mumford-Manin-Drinfeld Lemma

CR(x1, x2, x3, x4) :=
|x1 − x3| |x2 − x4|
|x1 − x4| |x2 − x3|

= p−δ(x1→x2;x3→x4) ,

where δ(x1 → x2; x3 → x4) is the number of common edges
for the two bi-infinite paths x1 → x2 and x3 → x4, counted
positively if orientations agree and negatively otherwise.

From lemma, one can deduce a bijective correpondence:
f ∈M(Q3

p) ↔ hyperbolic isometry of the interior T.



The tree, once again.



Conformal invariance at the level of n-point functions is
defined exactly as before but with the local rescaling factor

|Jf (x)|
1
d

now replaced by the Radon-Nikodym derivative formula(
d((f −1)∗m)

dm
(x)

) 1
d

where m is the previous Lebesgue measure on Qd
p .

Now on to the proof of conformal invariance for the free
measure µC−∞ on S ′(Qd

p).



Proof of conformal invariance: Showing

〈φ(x1) · · ·φ(xn)〉 =

(
n∏

i=1

|Jf (xi)|
∆
d

)
× 〈φ(f (x1)) · · ·φ(f (xn))〉

reduces to the n = 2 case. For f an isometry of Qd
p or a

dilation: trivial. Only need to check the case of unit sphere
inversion f = J .

The local rescaling factor is |JJ(x)| 1d = |x |−2. Result then
follows from elementary identity

|J(x)− J(y)| =
|x − y |
|x | |y |

QED.



Fix the dimensionless parameters g , µ and let gr = L−(3−4[φ])rg
and µr = L−(3−2[φ])rµ. Same as strict scaling limit of fixed
critical probability measure on unit lattice. Bare/dimensionful
couplings gr , µr go to ∞.

Let Λs = B(0, Ls), IR (or volume) cut-off.

Let

Vr ,s(φ) =

∫
Λs

{gr : φ4 :r (x) + µr : φ2 :r (x)}d3x

where : φk :r is Wick ordering using dµCr .
Define the probability measure

dνr ,s(φ) =
1

Zr ,s
e−Vr,s(φ)dµCr (φ) .



Let φr ,s be the random distribution in S ′(Q3
p) sampled

according to νr ,s and define the squared field Nr [φ
2
r ,s ] which is

a deterministic function(al) of φr ,s , with values in S ′(Q3
p),

given by

Nr [φ
2
r ,s ](j) = (Z2)r

∫
Q3

p

{Y2 : φ2
r ,s :r (x)− Y0L

−2r [φ]} j(x) d3x

for suitable parameters Z2, Y0, Y2. We also need a Y1.

Our main result concerns the limit law of the pair
(Y1φr ,s ,Nr [φ

2
r ,s ]) in S ′(Q3

p)× S ′(Q3
p) when r → −∞, s →∞

(in any order).
For the precise statement we need the approximate fixed point
value

ḡ∗ =
pε − 1

36Lε(1− p−3)
.



Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

∃ρ > 0, ∃L0, ∀L ≥ L0, ∃ε0 > 0, ∀ε ∈ (0, ε0], ∃[φ2]>2[φ],

∃ fonctions µ(g), Y0(g), Y2(g) on (ḡ∗ − ρε
3
2 , ḡ∗ + ρε

3
2 ) such

that if one lets µ = µ(g), Y0 = Y0(g), Y2 = Y2(g) and
Z2 = L−([φ2]−2[φ]) then the joint law of (Y1φr ,s ,Nr [φ

2
r ,s ]) con-

verge weakly and in the sense of moments to that of a pair
(φ,N[φ2]) such that:

1 ∀k ∈ Z, (L−k[φ]φ(Lk ·), L−k[φ2]N[φ2](Lk ·))
d
= (φ,N[φ2]).

2 〈φ(1Z3
p
), φ(1Z3

p
), φ(1Z3

p
), φ(1Z3

p
)〉T < 0 i.e., φ is

non-Gaussian. Here, 1Z3
p

denotes the indicator function of

B(0, 1).

3 〈N[φ2](1Z3
p
),N[φ2](1Z3

p
)〉T = 1.

4 〈φ(1Z3
p
)2〉 = 1.



The mixed correlation functions satisfy, in the sense of
distributions,

〈 φ(L−kx1) · · ·φ(L−kxn) N[φ2](L−ky1) · · ·N[φ2](L−kym) 〉

= L−(n[φ]+m[φ2])k 〈 φ(x1) · · ·φ(xn) N[φ2](y1) · · ·N[φ2](ym) 〉

For our hierarchical version of the 3D fractional φ4 model we
also proved [φ2]− 2[φ] = 1

3
ε + o(ε).

This was predicted by Wilson in “Renormalization of a scalar
field theory in strong coupling”, PRD 1972.

This is also what is expected for the Euclidean model on R3.

Not too far, if one boldly extrapolates to ε = 1, from the most
precise available estimates concerning the short range 3D Ising
model: [φ2]− 2[φ] = 0.376327 . . . (JHEP 2016 by Kos,
Poland, Simmons-Duffin and Vichi, using conformal
bootstrap).



We also proved the law νφ×φ2 of (φ,N[φ2]), is independent of

g in the interval (ḡ∗ − ρε
3
2 , ḡ∗ + ρε

3
2 ). This also holds if one

also adds φ6, φ8,. . . terms in the potential, with small
couplings. We proved strong local universality for a
non-Gaussian scaling limit.

Theorem 2: A.A.-Chandra-Guadagni 2013

νφ×φ2 is fully scale invariant, i.e., invariant under the action of
the scaling group pZ instead of the subgroup LZ. Moreover,
µ(g) and [φ2] are independent of the arbitrary factor L.

The two-point correlations are given in the sense of
distributions by

〈φ(x)φ(y)〉 =
c1

|x − y |2[φ]

〈N[φ2](x) N[φ2](y)〉 =
c2

|x − y |2[φ2]



Note that 2[φ2] = 3− 1
3
ε + o(ε) → still L1,loc !

Theorem 3: A.A., May 2015

Use ψi to denote the scaling limits φ or N[φ2]. Then, for all
mixed correlation ∃ a smooth (i.e., locally constant) fonction
〈ψ1(z1) · · ·ψn(zn)〉 on (Q3

p)n\Diag which is locally integrable
(on the big diagonal Diag) and such that

E ψ1(f1) · · ·ψn(fn) =∫
(Q3

p)n\Diag

〈ψ1(z1) · · ·ψn(zn)〉 f1(z1) · · · fn(zn) d3z1 · · · d3zn

for all test functions f1, . . . , fn ∈ S(Q3
p).



This hinges on showing the BNNFB (basic nearest neighbor
factorized bound) of A.A., “A Second-Quantized
Kolmogorov-Chentsov Theorem via the Operator Product
Expansion”, CMP 2020. The BNNFB is

| 〈ψ1(z1) · · ·ψn(zn)〉 | ≤ O(1)×
n∏

i=1

1

|zi − n.n.|[ψi ]

when z1, . . . , zn are confined to a compact set.

This follows from the use of the SDRG (space-dependent
renormalization group) to derive an explicit representation of
pointwise correlations in terms of very close analogues of tree
Witten diagrams. Hence, the emergent connection to the
AdS/CFT correspondence.

Thank you for your attention.


