RENORMALIZATION GROUP TRAJECTORIES between Two fixed points

Abdelmalek Abdesselam

University of Virginia, Department of Mathematics
ICMP Prague, Aug 7, 2009

- Main reference: A. A. CMP 07'
- Main reference: A. A. CMP 07'
- Outline:

1. Global dynamics of Wilson's RG
2. Rigorous results (selection)
3. The BMS model
4. Good infinite-volume coordinates
5. Idea of the proof
6. Functional analysis, norms
7. Perspectives

1. Global Dynamics of Wilson's Renormalization Group:

1. Global Dynamics of Wilson's Renormalization Group:

QFT functional integrals: a challenge for mathematicians

1. Global Dynamics of Wilson's Renormalization Group:

QFT functional integrals: a challenge for mathematicians
e. g., the ϕ^{4} model

$$
\int_{\mathcal{F}} D \phi \cdots e^{-\int_{\mathbb{R}^{d}}\left[\frac{1}{2}(\nabla \phi)^{2}(x)+\mu \phi(x)^{2}+g \phi(x)^{4}\right] d x}
$$

1. Global Dynamics of Wilson's Renormalization Group:

QFT functional integrals: a challenge for mathematicians
e. g., the ϕ^{4} model

$$
\int_{\mathcal{F}} D \phi \cdots e^{\left.-\int_{\mathbb{R} d} d \frac{1}{2}(\nabla \phi)^{2}(x)+\mu \phi(x)^{2}+g \phi(x)^{4}\right] d x}
$$

\mathcal{F} infinite-dimensional space of functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$
$D \phi$ Lebesgue measure on \mathcal{F}

- Construction by scaling limit of lattice theories on $(a \mathbb{Z})^{d} \subset \mathbb{R}^{d} \Longleftrightarrow$ cut-off $\frac{1}{a}$ on momenta in Fourier space
- rescale to unit lattice
- approximants to continuum theory $=$ points in the space of all possible unit cut-off theories
- Construction by scaling limit of lattice theories on $(a \mathbb{Z})^{d} \subset \mathbb{R}^{d} \Longleftrightarrow$ cut-off $\frac{1}{a}$ on momenta in Fourier space
- rescale to unit lattice
- approximants to continuum theory $=$ points in the space of all possible unit cut-off theories
- RG = dynamical system on this space
- Construction by scaling limit of lattice theories on $(a \mathbb{Z})^{d} \subset \mathbb{R}^{d} \Longleftrightarrow$ cut-off $\frac{1}{a}$ on momenta in Fourier space
- rescale to unit lattice
- approximants to continuum theory $=$ points in the space of all possible unit cut-off theories
- $\mathrm{RG}=$ dynamical system on this space
- $d \nu$ measure on random ϕ with $\hat{\phi}(p)=0$ if $|p|>1$
- introduce magnification ratio $L>1$
- split $\phi=\zeta+\phi_{\text {low }}$

$$
\begin{aligned}
& \zeta \Longleftrightarrow L^{-1}<|p| \leq 1 \\
& \phi_{\text {low }} \Longleftrightarrow|p| \leq L^{-1}
\end{aligned}
$$

- integrate over $\zeta \longrightarrow$ marginal probability distribution on $\phi_{\text {low }}$
- rescale $\psi(x)=L^{[\phi]} \phi_{\text {low }}(L x) \longrightarrow$ measure $d \nu^{\prime}$
- integrate over $\zeta \longrightarrow$ marginal probability distribution on $\phi_{\text {low }}$
- rescale $\psi(x)=L^{[\phi]} \phi_{\text {low }}(L x) \longrightarrow$ measure $d \nu^{\prime}$
- RG map: $d \nu \longrightarrow d \nu^{\prime}$
- integrate over $\zeta \longrightarrow$ marginal probability distribution on $\phi_{\text {low }}$
- rescale $\psi(x)=L^{[\phi]} \phi_{\text {low }}(L x) \longrightarrow$ measure $d \nu^{\prime}$
- RG map: $d \nu \longrightarrow d \nu^{\prime}$

Important features: fixed points, eigenvalues of linearized RG around them, local stable \& unstable manifolds...

- integrate over $\zeta \longrightarrow$ marginal probability distribution on $\phi_{\text {low }}$
- rescale $\psi(x)=L^{[\phi]} \phi_{\text {low }}(L x) \longrightarrow$ measure $d \nu^{\prime}$
- RG map: $d \nu \longrightarrow d \nu^{\prime}$

Important features: fixed points, eigenvalues of linearized RG around them, local stable \& unstable manifolds...

Local features

- integrate over $\zeta \longrightarrow$ marginal probability distribution on $\phi_{\text {low }}$
- rescale $\psi(x)=L^{[\phi]} \phi_{\text {low }}(L x) \longrightarrow$ measure $d \nu^{\prime}$
- RG map: $d \nu \longrightarrow d \nu^{\prime}$

Important features: fixed points, eigenvalues of linearized RG around them, local stable \& unstable manifolds...

Local features
Global features ? e. g. heteroclinic trajectories between fixed points
2. Rigorous Results (Selection):

2. Rigorous Results (Selection):

Local:

- RG exponents for Gaussian fixed point, \exists nontrivial IR fp in " $4-\epsilon$ " dimensions, local stable/unstable manifolds, for HM: Bleher-Sinai CMP 73', 75', Collet-Eckmann CMP 77', LNP 78', Gawędzki-Kupiainen CMP 83', JSP 84', Pereira JMP 93'
- HM at $\epsilon=1$: Koch-Wittwer CMP 86'
- new fps at $d=2+\frac{2}{n-1}, n=3,4, \ldots$ in LPA: Felder CMP 95'

2. Rigorous Results (Selection):

Local:

- RG exponents for Gaussian fixed point, \exists nontrivial IR fp in " $4-\epsilon$ " dimensions, local stable/unstable manifolds, for HM: Bleher-Sinai CMP 73', 75', Collet-Eckmann CMP 77', LNP 78', Gawędzki-Kupiainen CMP 83', JSP 84', Pereira JMP 93'
- HM at $\epsilon=1$: Koch-Wittwer CMP 86'
- new fps at $d=2+\frac{2}{n-1}, n=3,4, \ldots$ in LPA: Felder CMP 95'
- Euclidean model in " $4-\epsilon$ " dimensions, \exists nontrivial IR fp and local stable manifold: Brydges-Dimock-Hurd CMP 98'
- Same for nicer model: Brydges-Mitter-Scoppola CMP 03'

2. Rigorous Results (Selection):

Local:

- RG exponents for Gaussian fixed point, \exists nontrivial IR fp in " $4-\epsilon$ " dimensions, local stable/unstable manifolds, for HM: Bleher-Sinai CMP 73', 75', Collet-Eckmann CMP 77', LNP 78', Gawędzki-Kupiainen CMP 83', JSP 84', Pereira JMP 93'
- HM at $\epsilon=1$: Koch-Wittwer CMP 86'
- new fps at $d=2+\frac{2}{n-1}, n=3,4, \ldots$ in LPA: Felder CMP 95'
- Euclidean model in " $4-\epsilon$ " dimensions, \exists nontrivial IR fp and local stable manifold: Brydges-Dimock-Hurd CMP 98'
- Same for nicer model: Brydges-Mitter-Scoppola CMP 03'

Global:

- uniqueness of IR fp in LPA for $3 \leq d<4$: Lima CMP 87'
- Massless GN in " $2+\epsilon$ " dim: Gawędski-Kupiainen NPB 85'

2. Rigorous Results (Selection):

Local:

- RG exponents for Gaussian fixed point, \exists nontrivial IR fp in " $4-\epsilon$ " dimensions, local stable/unstable manifolds, for HM: Bleher-Sinai CMP 73', 75', Collet-Eckmann CMP 77', LNP 78', Gawędzki-Kupiainen CMP 83', JSP 84', Pereira JMP 93'
- HM at $\epsilon=1$: Koch-Wittwer CMP 86'
- new fps at $d=2+\frac{2}{n-1}, n=3,4, \ldots$ in LPA: Felder CMP 95'
- Euclidean model in " $4-\epsilon$ " dimensions, \exists nontrivial IR fp and local stable manifold: Brydges-Dimock-Hurd CMP 98'
- Same for nicer model: Brydges-Mitter-Scoppola CMP 03'

Global:

- uniqueness of IR fp in LPA for $3 \leq d<4$: Lima CMP 87'
- Massless GN in " $2+\epsilon$ " dim: Gawędski-Kupiainen NPB 85'
- BMS model, construction of discrete heteroclinic trajectories joining Gaussian UV fp to nontrivial IR fp: A. A. CMP 07'

3. The BMS Model:

3. The BMS Model:

Scalar field $\phi: \mathbb{R}^{3} \longrightarrow \mathbb{R}$

3. The BMS Model:

Scalar field $\phi: \mathbb{R}^{3} \longrightarrow \mathbb{R}$

$$
Z=\underbrace{\int D \phi e^{-\frac{1}{2}\left\langle\phi,(-\Delta)^{\frac{3+\epsilon}{4}} \phi\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)}}}_{\text {Gaussian measure }}-\overbrace{\int d x\left(\mu: \phi^{2}(x):+g: \phi^{4}(x):\right)}^{\text {potential } V(\phi)}
$$

- propagator $(-\Delta)^{-\frac{3+\epsilon}{4}}(x, y) \sim \frac{1}{|x-y|^{2[\phi]}}$
- $[\phi]=\frac{3-\epsilon}{4}$
- propagator $\sim \int_{0}^{\infty} \frac{d l}{l} l^{-2[\phi]} u\left(\frac{x-y}{l}\right)$
- u finite range, smooth, and nonnegative in x and p
- unit cut-off $C(x-y)=\int_{1}^{\infty} \frac{d l}{l} I^{-2[\phi]} u\left(\frac{x-y}{l}\right)$
- split $C(x-y)=\Gamma(x-y)+C_{L^{-1}}(x-y)$ with $C_{L^{-1}}(x-y)=L^{-2[\phi]} C\left(L^{-1}(x-y)\right)$ and

$$
\Gamma(x-y)=\int_{1}^{L} \frac{d l}{l} I^{-2[\phi]} u\left(\frac{x-y}{l}\right)
$$

- convolution $d \mu_{C}=d \mu_{\Gamma} \star d \mu_{C_{L-1}}$

$$
\begin{aligned}
Z=\int d \mu_{C}(\phi) & \mathcal{Z}(\phi)=\int d \mu_{C_{L-1}}(\psi) d \mu_{\Gamma}(\zeta) \mathcal{Z}(\psi+\zeta) \\
& =\int d \mu_{C}(\phi)(\mathcal{R Z})(\phi)
\end{aligned}
$$

$$
(\mathcal{R Z})(\phi)=\int d \mu_{\Gamma}(\zeta) \mathcal{Z}\left(\phi_{L^{-1}}+\zeta\right) \text { and } \phi_{L^{-1}}(x)=L^{-[\phi]} \phi\left(L^{-1} x\right)
$$

- split $C(x-y)=\Gamma(x-y)+C_{L^{-1}}(x-y)$ with $C_{L^{-1}}(x-y)=L^{-2[\phi]} C\left(L^{-1}(x-y)\right)$ and

$$
\Gamma(x-y)=\int_{1}^{L} \frac{d l}{l} I^{-2[\phi]} u\left(\frac{x-y}{l}\right)
$$

- convolution $d \mu_{C}=d \mu_{\Gamma} \star d \mu_{C_{L-1}}$

$$
\begin{aligned}
Z=\int d \mu_{C}(\phi) & \mathcal{Z}(\phi)=\int d \mu_{C_{L-1}}(\psi) d \mu_{\Gamma}(\zeta) \mathcal{Z}(\psi+\zeta) \\
& =\int d \mu_{C}(\phi)(\mathcal{R} \mathcal{Z})(\phi)
\end{aligned}
$$

$(\mathcal{R Z})(\phi)=\int d \mu_{\Gamma}(\zeta) \mathcal{Z}\left(\phi_{L^{-1}}+\zeta\right)$ and $\phi_{L^{-1}}(x)=L^{-[\phi]} \phi\left(L^{-1} x\right)$
RG map: $\mathcal{Z} \longrightarrow \mathcal{R} \mathcal{Z}$

4. Good Infinite-Volume Coordinates:

Brydges et al.
$\mathbb{Z}^{3} \subset \mathbb{R}^{3} \Longrightarrow$ cell decomposition

In finite box Λ

$$
\begin{aligned}
& \mathcal{Z}(\Lambda, \phi)= \\
& \quad \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\substack{X_{1}, \ldots, X_{n} \\
\text { disjoint in } \wedge}} \exp \left[-\int_{\Lambda \backslash\left(\cup X_{i}\right)} d x\left\{g: \phi^{4}(x): c+\mu: \phi^{2}(x): c\right\}\right] \\
& \quad \times K\left(X_{1}, \phi \mid X_{1}\right) \cdots K\left(X_{n},\left.\phi\right|_{X_{n}}\right) \\
& \\
& \\
& \mathcal{Z} \longleftrightarrow(g, \mu, K) \\
& \\
& K=(K(X, \cdot))_{X \text { polymer collection of local functionals }}
\end{aligned}
$$

In finite box Λ

$$
\begin{aligned}
& \mathcal{Z}(\Lambda, \phi)= \\
& \quad \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\begin{array}{c}
x_{1}, \ldots, X_{n} \\
\text { disjoint in } \wedge
\end{array}} \exp \left[-\int_{\Lambda \backslash\left(\cup X_{i}\right)} d x\left\{g: \phi^{4}(x): c+\mu: \phi^{2}(x): c\right\}\right] \\
& \quad \times K\left(X_{1},\left.\phi\right|_{X_{1}}\right) \cdots K\left(X_{n},\left.\phi\right|_{X_{n}}\right) \\
& \\
& \text { - } \nless(g, \mu, K) \\
& \text { - } K=(K(X, \cdot))_{X \text { polymer collection of local functionals }} \\
& \text { need to extract second order perturbation theory: }
\end{aligned}
$$

$K(X, \phi)=g^{2}\left[\right.$ explicit complicated formula] $e^{-V(X, \phi)}+R(X, \phi)$

- R of order g^{3}

In finite box Λ

$$
\begin{aligned}
& \mathcal{Z}(\Lambda, \phi)= \\
& \quad \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\begin{array}{c}
X_{1}, \ldots, X_{n} \\
\text { disioint in } \wedge
\end{array}} \exp \left[-\int_{\Lambda \backslash\left(\cup X_{i}\right)} d x\left\{g: \phi^{4}(x): c+\mu: \phi^{2}(x): c\right\}\right] \\
& \quad \times K\left(X_{1}, \phi \mid X_{1}\right) \cdots K\left(X_{n}, \phi \mid X_{n}\right) \\
& \\
& \\
& \text { - } \longleftrightarrow(g, \mu, K) \\
& \text { - need to extract second order perturbation theory: }
\end{aligned}
$$

$K(X, \phi)=g^{2}\left[\right.$ explicit complicated formula] $e^{-V(X, \phi)}+R(X, \phi)$

- R of order g^{3}
- RG map: $(g, \mu, R) \longrightarrow\left(g^{\prime}, \mu^{\prime}, R^{\prime}\right)$

Sketch of the RG phase portrait:

RG map in (g, μ, R) coordinates:

$$
\begin{aligned}
g^{\prime} & =L^{\epsilon} g-L^{2 \epsilon} a(L, \epsilon) g^{2}+\xi_{g}(g, \mu, R) \\
\mu^{\prime} & =L^{\frac{3+\epsilon}{2}} \mu+\xi_{\mu}(g, \mu, R) \\
R^{\prime} & =\mathcal{L}^{(g, \mu)}(R)+\xi_{R}(g, \mu, R)
\end{aligned}
$$

RG map in (g, μ, R) coordinates:

$$
\begin{aligned}
g^{\prime} & =L^{\epsilon} g-L^{2 \epsilon} a(L, \epsilon) g^{2}+\xi_{g}(g, \mu, R) \\
\mu^{\prime} & =L^{\frac{3+\epsilon}{2}} \mu+\xi_{\mu}(g, \mu, R) \\
R^{\prime} & =\mathcal{L}^{(g, \mu)}(R)+\xi_{R}(g, \mu, R)
\end{aligned}
$$

where $\mathcal{L}^{(g, \mu)}(\cdot)$ is a contraction

RG map in (g, μ, R) coordinates:

$$
\begin{aligned}
g^{\prime} & =L^{\epsilon} g-L^{2 \epsilon} a(L, \epsilon) g^{2}+\xi_{g}(g, \mu, R) \\
\mu^{\prime} & =L^{\frac{3+\epsilon}{2}} \mu+\xi_{\mu}(g, \mu, R) \\
R^{\prime} & =\mathcal{L}^{(g, \mu)}(R)+\xi_{R}(g, \mu, R)
\end{aligned}
$$

where $\mathcal{L}^{(g, \mu)}(\cdot)$ is a contraction
Simplified RG map:

$$
\begin{aligned}
g^{\prime} & =L^{\epsilon} g-L^{2 \epsilon} a(L, \epsilon) g^{2} \\
\mu^{\prime} & =L^{\frac{3+\epsilon}{2}} \mu \\
R^{\prime} & =\mathcal{L}^{(g, \mu)}(R)
\end{aligned}
$$

Approximate fixed point at $\left(\bar{g}_{*}, 0,0\right)$ with

$$
\bar{g}_{*}=\frac{L^{\epsilon}-1}{L^{2 \epsilon} a} \sim \epsilon
$$

R

Fake trajectory $\left(\bar{g}_{n}\right)_{n \in \mathbb{Z}}$ obtained by simple 1d, yet nonlinear, iteration by $f(x)=L^{\epsilon} x-L^{2 \epsilon} a x^{2}$

Fake trajectory $\left(\bar{g}_{n}\right)_{n \in \mathbb{Z}}$ obtained by simple 1d, yet nonlinear, iteration by $f(x)=L^{\epsilon} x-L^{2 \epsilon} a x^{2}$

Note that $f^{\prime}(0)=L^{\epsilon}>1$ and $f^{\prime}\left(\bar{g}_{*}\right)=2-L^{\epsilon}<1$

True trajectories $\left(g_{n}, \mu_{n}, R_{n}\right)_{n \in \mathbb{Z}}$ constructed as perturbations of fake trajectories

R

Theorem
(A. A. CMP 07')

In the regime where $\epsilon>0$ is small enough, for any $\left.\omega_{0} \in\right] 0, \frac{1}{2}[$, there exists a complete trajectory $\left(g_{n}, \mu_{n}, R_{n}\right)_{n \in \mathbb{Z}}$ for the $R G$ map such that $\lim _{n \rightarrow-\infty}\left(g_{n}, \mu_{n}, R_{n}\right)=(0,0,0)$ the Gaussian ultraviolet fixed point, and $\lim _{n \rightarrow+\infty}\left(g_{n}, \mu_{n}, R_{n}\right)=\left(g_{*}, \mu_{*}, R_{*}\right)$ the BMS nontrivial infrared fixed point, and determined by the 'initial condition' at unit scale

$$
g_{0}=\omega_{0} \bar{g}_{*}
$$

5. Idea of the Proof:

5. Idea of the Proof:

- $\left(g_{n}, \mu_{n}, R_{n}\right)=\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)$

5. Idea of the Proof:

- $\left(g_{n}, \mu_{n}, R_{n}\right)=\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)$
- rewrite RG in terms of deviation variables $\left(\delta g_{n}, \mu_{n}, R_{n}\right)$

$$
\begin{aligned}
\delta g_{n+1} & =f^{\prime}\left(\bar{g}_{n}\right) \delta g_{n}+\left[-L^{2 \epsilon} a \delta g_{n}^{2}+\xi_{g}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)\right] \\
\mu_{n+1} & =L^{\frac{3+\epsilon}{2}} \mu_{n}+\xi_{\mu}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right), \\
R_{n+1} & =\mathcal{L}^{\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}\right)}\left(R_{n}\right)+\xi_{R}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)
\end{aligned}
$$

5. Idea of the Proof:

- $\left(g_{n}, \mu_{n}, R_{n}\right)=\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)$
- rewrite RG in terms of deviation variables $\left(\delta g_{n}, \mu_{n}, R_{n}\right)$

$$
\begin{aligned}
\delta g_{n+1} & =f^{\prime}\left(\bar{g}_{n}\right) \delta g_{n}+\left[-L^{2 \epsilon} a \delta g_{n}^{2}+\xi_{g}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)\right] \\
\mu_{n+1} & =L^{\frac{3+\epsilon}{2}} \mu_{n}+\xi_{\mu}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right), \\
R_{n+1} & =\mathcal{L}^{\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}\right)}\left(R_{n}\right)+\xi_{R}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)
\end{aligned}
$$

Boundary conditions:

5. Idea of the Proof:

- $\left(g_{n}, \mu_{n}, R_{n}\right)=\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)$
- rewrite RG in terms of deviation variables $\left(\delta g_{n}, \mu_{n}, R_{n}\right)$

$$
\begin{aligned}
\delta g_{n+1} & =f^{\prime}\left(\bar{g}_{n}\right) \delta g_{n}+\left[-L^{2 \epsilon} a \delta g_{n}^{2}+\xi_{g}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)\right] \\
\mu_{n+1} & =L^{\frac{3+\epsilon}{2}} \mu_{n}+\xi_{\mu}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right), \\
R_{n+1} & =\mathcal{L}^{\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}\right)}\left(R_{n}\right)+\xi_{R}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)
\end{aligned}
$$

Boundary conditions:

- Infrared: μ_{n} does not blow up when $n \rightarrow+\infty$

5. Idea of the Proof:

- $\left(g_{n}, \mu_{n}, R_{n}\right)=\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)$
- rewrite RG in terms of deviation variables $\left(\delta g_{n}, \mu_{n}, R_{n}\right)$

$$
\begin{aligned}
\delta g_{n+1} & =f^{\prime}\left(\bar{g}_{n}\right) \delta g_{n}+\left[-L^{2 \epsilon} a \delta g_{n}^{2}+\xi_{g}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)\right] \\
\mu_{n+1} & =L^{\frac{3+\epsilon}{2}} \mu_{n}+\xi_{\mu}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right), \\
R_{n+1} & =\mathcal{L}^{\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}\right)}\left(R_{n}\right)+\xi_{R}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)
\end{aligned}
$$

Boundary conditions:

- Infrared: μ_{n} does not blow up when $n \rightarrow+\infty$
- Ultraviolet: R_{n} does not blow up when $n \rightarrow-\infty$

5. Idea of the Proof:

- $\left(g_{n}, \mu_{n}, R_{n}\right)=\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)$
- rewrite RG in terms of deviation variables $\left(\delta g_{n}, \mu_{n}, R_{n}\right)$

$$
\begin{aligned}
\delta g_{n+1} & =f^{\prime}\left(\bar{g}_{n}\right) \delta g_{n}+\left[-L^{2 \epsilon} a \delta g_{n}^{2}+\xi_{g}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)\right], \\
\mu_{n+1} & =L^{\frac{3+\epsilon}{2}} \mu_{n}+\xi_{\mu}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right), \\
R_{n+1} & =\mathcal{L}^{\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}\right)}\left(R_{n}\right)+\xi_{R}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)
\end{aligned}
$$

Boundary conditions:

- Infrared: μ_{n} does not blow up when $n \rightarrow+\infty$
- Ultraviolet: R_{n} does not blow up when $n \rightarrow-\infty$
- Anthropic?: $\delta g_{0}=0$

Forward and backward integral equations towards the boundary conditions
$\forall n>0$,

$$
\begin{aligned}
\delta g_{n}= & f^{\prime}\left(\bar{g}_{n-1}\right) \delta g_{n-1}+\left[-L^{2 \epsilon} a \delta g_{n-1}^{2}\right. \\
& \left.+\xi_{g}\left(\bar{g}_{n-1}+\delta g_{n-1}, \mu_{n-1}, R_{n-1}\right)\right]
\end{aligned}
$$

$\forall n<0$,

$$
\delta g_{n}=\frac{1}{f^{\prime}\left(\bar{g}_{n}\right)} \delta g_{n+1}-\frac{1}{f^{\prime}\left(\bar{g}_{n}\right)}\left[-L^{2 \epsilon} a \delta g_{n}^{2}+\xi_{g}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)\right]
$$

$\forall n \in \mathbb{Z}$,

$$
\mu_{n}=L^{-\left(\frac{3+\epsilon}{2}\right)} \mu_{n+1}-L^{-\left(\frac{3+\epsilon}{2}\right)} \xi_{\mu}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)
$$

$\forall n \in \mathbb{Z}$,

$$
R_{n}=\mathcal{L}^{\left(\bar{g}_{n-1}+\delta g_{n-1}, \mu_{n-1}\right)}\left(R_{n-1}\right)+\xi_{R}\left(\bar{g}_{n-1}+\delta g_{n-1}, \mu_{n-1}, R_{n-1}\right)
$$

Forward and backward integral equations towards the boundary conditions
$\forall n>0$,

$$
\begin{aligned}
\delta g_{n}= & f^{\prime}\left(\bar{g}_{n-1}\right) \delta g_{n-1}+\left[-L^{2 \epsilon} a \delta g_{n-1}^{2}\right. \\
& \left.+\xi_{g}\left(\bar{g}_{n-1}+\delta g_{n-1}, \mu_{n-1}, R_{n-1}\right)\right]
\end{aligned}
$$

$\forall n<0$,

$$
\delta g_{n}=\frac{1}{f^{\prime}\left(\bar{g}_{n}\right)} \delta g_{n+1}-\frac{1}{f^{\prime}\left(\bar{g}_{n}\right)}\left[-L^{2 \epsilon} a \delta g_{n}^{2}+\xi_{g}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)\right]
$$

$\forall n \in \mathbb{Z}$,

$$
\mu_{n}=L^{-\left(\frac{3+\epsilon}{2}\right)} \mu_{n+1}-L^{-\left(\frac{3+\epsilon}{2}\right)} \xi_{\mu}\left(\bar{g}_{n}+\delta g_{n}, \mu_{n}, R_{n}\right)
$$

$\forall n \in \mathbb{Z}$,

$$
R_{n}=\mathcal{L}^{\left(\bar{g}_{n-1}+\delta g_{n-1}, \mu_{n-1}\right)}\left(R_{n-1}\right)+\xi_{R}\left(\bar{g}_{n-1}+\delta g_{n-1}, \mu_{n-1}, R_{n-1}\right)
$$

then iterate until hit the b.c.

Fixed point equation in space of sequences:
$\forall n>0$,

$$
\delta g_{n}=\sum_{0 \leq p<n}\left(\prod_{p<j<n} f^{\prime}\left(\bar{g}_{j}\right)\right)\left[-L^{2 \epsilon} a \delta g_{p}^{2}+\xi_{g}\left(\bar{g}_{p}+\delta g_{p}, \mu_{p}, R_{p}\right)\right]
$$

$\forall n<0$,

$$
\delta g_{n}=-\sum_{n \leq p<0}\left(\prod_{n \leq j \leq p} \frac{1}{f^{\prime}\left(\bar{g}_{j}\right)}\right)\left[-L^{2 \epsilon} a \delta g_{p}^{2}+\xi_{g}\left(\bar{g}_{p}+\delta g_{p}, \mu_{p}, R_{p}\right)\right]
$$

$\forall n \in \mathbb{Z}$,

$$
\mu_{n}=-\sum_{p \geq n} L^{-\left(\frac{3+\epsilon}{2}\right)(p-n+1)} \xi_{\mu}\left(\bar{g}_{p}+\delta g_{p}, \mu_{p}, R_{p}\right)
$$

$\forall n \in \mathbb{Z}$,

$$
\begin{aligned}
& R_{n}=\sum_{p<n} \mathcal{L}^{\left(\bar{g}_{n-1}+\delta g_{n-1}, \mu_{n-1}\right)} \circ \mathcal{L}^{\left(\bar{g}_{n-2}+\delta g_{n-2}, \mu_{n-2}\right)} \circ \cdots \\
& \cdots \circ \mathcal{L}^{\left(\bar{g}_{p+1}+\delta g_{p+1}, \mu_{p+1}\right)}\left(\xi_{R}\left(\bar{g}_{p}+\delta g_{p}, \mu_{p}, R_{p}\right)\right)
\end{aligned}
$$

Use this to define a map on a space of sequences $\left(\delta g_{n}, \mu_{n}, R_{n}\right)_{n \in \mathbb{Z}}$

Use this to define a map on a space of sequences $\left(\delta g_{n}, \mu_{n}, R_{n}\right)_{n \in \mathbb{Z}}$
$\forall n>0$,

$$
\delta g_{n}^{\prime}=\sum_{0 \leq p<n}\left(\prod_{p<j<n} f^{\prime}\left(\bar{g}_{j}\right)\right)\left[-L^{2 \epsilon} a \delta g_{p}^{2}+\xi_{g}\left(\bar{g}_{p}+\delta g_{p}, \mu_{p}, R_{p}\right)\right]
$$

$\forall n<0$,

$$
\delta g_{n}^{\prime}=-\sum_{n \leq p<0}\left(\prod_{n \leq j \leq p} \frac{1}{f^{\prime}\left(\bar{g}_{j}\right)}\right)\left[-L^{2 \epsilon} a \delta g_{p}^{2}+\xi_{g}\left(\bar{g}_{p}+\delta g_{p}, \mu_{p}, R_{p}\right)\right]
$$

$\forall n \in \mathbb{Z}$,

$$
\mu_{n}^{\prime}=-\sum_{p \geq n} L^{-\left(\frac{3+\epsilon}{2}\right)(p-n+1)} \xi_{\mu}\left(\bar{g}_{p}+\delta g_{p}, \mu_{p}, R_{p}\right)
$$

$\forall n \in \mathbb{Z}$,

$$
\begin{aligned}
& R_{n}^{\prime}=\sum_{p<n} \mathcal{L}^{\left(\bar{g}_{n-1}+\delta g_{n-1}, \mu_{n-1}\right)} \circ \mathcal{L}^{\left(\bar{g}_{n-2}+\delta g_{n-2}, \mu_{n-2}\right)} \circ \cdots \\
& \cdots \circ \mathcal{L}^{\left(\bar{g}_{p+1}+\delta g_{p+1}, \mu_{p+1}\right)}\left(\xi_{R}\left(\bar{g}_{p}+\delta g_{p}, \mu_{p}, R_{p}\right)\right)
\end{aligned}
$$

- Use contraction mapping argument in a big Banach space of double-sided sequences
- Use contraction mapping argument in a big Banach space of double-sided sequences
- The fixed point (in the space of sequences) is a trajectory

6. Functional Analysis, Norms:

Fields:

- Δ a closed cube. Sobolev imbedding $W^{4,2}(\stackrel{\circ}{\Delta}) \hookrightarrow C^{2}(\Delta)$
- $\phi \in \operatorname{Fld}(X)=\bigoplus_{\Delta \subset X} W^{4,2}(\stackrel{\circ}{\Delta})$ plus C^{2} gluing conditions
- $\|\phi\|_{\operatorname{Fld}(X)}=\left(\sum_{\Delta \subset X} \sum_{|\nu| \leq 4}\left\|\partial^{\nu} \phi_{\Delta}\right\|_{L^{2}(\stackrel{\circ}{\Delta})}^{2}\right)^{\frac{1}{2}}$
- Fluctuation measure $d \mu_{\Gamma}$ realized in Hilbert spaces $\operatorname{Fld}(X)$
- Also need $\|\phi\|_{C^{2}(X)}=\sup _{x \in X} \max _{|\nu| \leq 2}\left|\partial^{\nu} \phi(x)\right|$
- ϕ 's are real-valued

Functionals:

Functionals:

$$
\begin{aligned}
& \|K\|=\sup _{\Delta_{0}} \sum_{X \supset \Delta_{0}} L^{5|X|} \sup _{\phi \in \operatorname{Fld}(X)}\left\{e^{-\kappa \sum_{\Delta c x} \sum_{1 \leq|\nu| \leq 4}\left\|\partial^{\nu} \phi\right\|_{L^{2}(\AA)}^{2}}\right. \\
& \left.\times \sum_{0 \leq n \leq 9} \frac{\left(c g^{-\frac{1}{4}}\right)^{n}}{n!} \sup _{\phi_{1}, \ldots, \phi_{n} \in \operatorname{Fld}(X) \backslash\{0\}} \frac{\left|D^{n} K\left(X, \phi ; \phi_{1}, \ldots, \phi_{n}\right)\right|}{\left\|\phi_{1}\right\| C^{2}(\Delta) \cdots\left\|\phi_{n}\right\|_{C^{2}(\Delta)}}\right\}
\end{aligned}
$$

Functionals:

$$
\begin{aligned}
& \|K\|=\sup _{\Delta_{0}} \sum_{X \supset \Delta_{0}} L^{5|X|} \sup _{\phi \in \operatorname{Fld}(X)}\left\{e^{-\kappa \sum_{\Delta c x} \sum_{1 \leq|\nu| \leq 4}\left\|\partial^{\nu} \phi\right\|_{L^{2}(\Delta)}^{2}}\right. \\
& \left.\times \sum_{0 \leq n \leq 9} \frac{\left(c g^{-\frac{1}{4}}\right)^{n}}{n!} \sup _{\phi_{1}, \ldots, \phi_{n} \in \operatorname{Fld}(X) \backslash\{0\}} \frac{\left|D^{n} K\left(X, \phi ; \phi_{1}, \ldots, \phi_{n}\right)\right|}{\left\|\phi_{1}\right\| C^{2}(\Delta) \cdots\left\|\phi_{n}\right\|_{C^{2}(\Delta)}}\right\}
\end{aligned}
$$

- K's allowed to be complex-valued

Functionals:

$$
\begin{aligned}
& \|K\|=\sup _{\Delta_{0}} \sum_{X \supset \Delta_{0}} L^{5|X|} \sup _{\phi \in \operatorname{Fld}(X)}\left\{e^{-\kappa \sum_{\Delta c x} \sum_{1 \leq|\nu| \leq 4}\left\|\partial^{\nu} \phi\right\|_{L^{2}(\Delta)}^{2}}\right. \\
& \times \sum_{0 \leq n \leq 9} \frac{\left(c g^{-\frac{1}{4}}\right)^{n}}{n!} \sup _{\phi_{1}, \ldots, \phi_{n} \in \operatorname{Fld}(X) \backslash\{0\}} \frac{\left|D^{n} K\left(X, \phi ; \phi_{1}, \ldots, \phi_{n}\right)\right|}{\left.\left\|\phi_{1}\right\| C^{2}(\Delta) \cdots\left\|\phi_{n}\right\|_{C^{2}(\Delta)}\right\}}
\end{aligned}
$$

- K's allowed to be complex-valued
- Fibered norm problem: norms depend on the dynamical variable g

Functionals:

$$
\begin{aligned}
& \|K\|=\sup _{\Delta_{0}} \sum_{X \supset \Delta_{0}} L^{5|X|} \sup _{\phi \in \operatorname{Fld}(X)}\left\{e^{-\kappa \sum_{\Delta c x} \sum_{1 \leq|\nu| \leq 4}\left\|\partial^{\nu} \phi\right\|_{L^{2}(\Delta)}^{2}}\right. \\
& \left.\times \sum_{0 \leq n \leq 9} \frac{\left(c g^{-\frac{1}{4}}\right)^{n}}{n!} \sup _{\phi_{1}, \ldots, \phi_{n} \in \operatorname{Fld}(X) \backslash\{0\}} \frac{\left|D^{n} K\left(X, \phi ; \phi_{1}, \ldots, \phi_{n}\right)\right|}{\left\|\phi_{1}\right\| C^{2}(\Delta) \cdots\left\|\phi_{n}\right\|_{C^{2}(\Delta)}}\right\}
\end{aligned}
$$

- K's allowed to be complex-valued
- Fibered norm problem: norms depend on the dynamical variable g
- use fake solution to calibrate

7. Perspectives:

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter
- Analytic continuation to Minkowski

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter
- Analytic continuation to Minkowski
- Alternate construction using phase space expansion of A. A. Ph. D. Thesis 97'

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter
- Analytic continuation to Minkowski
- Alternate construction using phase space expansion of A. A. Ph. D. Thesis $97{ }^{\prime}$
- GN in $2 d$

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter
- Analytic continuation to Minkowski
- Alternate construction using phase space expansion of A. A. Ph. D. Thesis 97'
- GN in $2 d$
- ϕ_{3}^{4} at large N

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter
- Analytic continuation to Minkowski
- Alternate construction using phase space expansion of A. A. Ph. D. Thesis $97{ }^{\prime}$
- GN in $2 d$
- ϕ_{3}^{4} at large N
- ϕ_{4}^{4} (noncommutative)

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter
- Analytic continuation to Minkowski
- Alternate construction using phase space expansion of A. A. Ph. D. Thesis $97{ }^{\prime}$
- GN in $2 d$
- ϕ_{3}^{4} at large N
- ϕ_{4}^{4} (noncommutative)
- $2 d$-model

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter
- Analytic continuation to Minkowski
- Alternate construction using phase space expansion of A. A. Ph. D. Thesis $97{ }^{\prime}$
- GN in $2 d$
- ϕ_{3}^{4} at large N
- ϕ_{4}^{4} (noncommutative)
- $2 d$-model
- YM in $4 d$

7. Perspectives:

- Study more refined dynamical systems features: construct full invariant curve, regularity properties, smoothness at $g=0$ (asked by K. Gawędzki), first on HM with Ph. D. student Ajay Chandra
- Correlation functions
- Composite fields, anomalous dimensions, preliminary results by P. K. Mitter
- Analytic continuation to Minkowski
- Alternate construction using phase space expansion of A. A. Ph. D. Thesis $97{ }^{\prime}$
- GN in $2 d$
- ϕ_{3}^{4} at large N
- ϕ_{4}^{4} (noncommutative)
- $2 d$-model
- YM in $4 d$
- Nontrivial UV fp in quantum gravity...

