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The hierarchical toy model for the continuum:

Let p be an integer > 1.

Let Lk , k ∈ Z, be the set of cubes
∏d

i=1[aip
k , (ai + 1)pk) with

a1, . . . , ad ∈ N0. The cubes of Lk form a partition of the
octant [0,∞)d .

Hence T = ∪k∈ZLk naturally has the structure of a doubly
infinite tree which is organized into layers or generations Lk :
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Picture for d = 1, p = 2



Forget [0,∞)d and Rd and just keep the tree.
Define the substitute for the continuum “L−∞”:= leafs at
infinity.

More precisely, these are the infinite bottom-up paths in the
tree.

A path representing an element x ∈ L−∞
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L−∞ is analogue of Rd and L0 is analogue of lattice Zd ⊂ Rd .

We will study a highly non-Gaussian random field φ = (φx)x∈L0

indexed by the layer L0. This will involve the bottom half of
the tree T≥0 = ∪k≥0Lk . If x, y ∈ L0, define their distance as
d(x, y) := pk where k is the depth where the two paths
leading from the bottom of the tree to x and y merge.

We also define the origin 0 ∈ L0 as the leftmost path/lattice
site. Thus #(B̄(0, pk)) = pdk as for the volume of balls in Rd .
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The massless fractional Gaussian field:

To every litter G of Mama Cat z ∈ Lk+1 associate a centered
Gaussian random vector (ζx)x∈G with pd × pd covariance
matrix made of 1− p−d ’s on the diagonal and −p−d ’s
everywhere else. We impose that Gaussian vectors
corresponding to different layers or different litters are
independent. We have

∑
x∈G ζx = 0 a.s.
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The ancestor function: for k ≥ 0, x ∈ L0, let anck(x) denote
the ancestor in Lk .

Let the symbol [φ] denote a parameter to be specified in
(0, d

2
). The massless fractional Gaussian field ψx, x ∈ L0 of

scaling dimention [φ] is given by

ψx =
∑
k≥0

p−k[φ]ζanck (x) .

It satisfies

Cxy := Eψxψy ∼
Cst

d(x, y)2[φ]

at long distance.
Define the probability measure µ on RL0 as the law of ψ.
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We introduce the Wick powers

: ψ2
x := ψ2

x − C00

and
: ψ4

x := ψ4
x − 6C00ψ

2
x + 3C 2

00 .

as well as the couplings (g , µ) ∈ (0,∞)× R.

g is the phi-four coupling constant and µ is the mass.

From now on: d = 3, [φ] = 3−ε
4

for ε > 0 small. We also fix
L = p` for some integer ` ≥ 1.
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The infinite volume Gibbs measure:

For m ≥ 0 we define the probability measure νm on RL0

dνm(φ) ∼ exp

− ∑
x∈B̄(0,Lm)

{
g : φ4

x : +µ : φ2
x :
} dµ(φ)

and the weak limit ν = limm→∞ νm. We let

ḡ∗ =
pε − 1

36Lε(1− p−3)
∼ Cst× ε .

For g in an interval of size ∼ ε
3
2 aroung ḡ∗ we constructed a

critical mass µc(g) for which the infinite volume measure ν is
critical, i.e., Eνφxφy → 0 when d(x, y)→∞ and∑

x∈L0
Eνφ0φx =∞.
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Main result (ACG 2013)

Using a new rigorous renormalization group method, we
proved that in an spatially averaged sense

Eνφxφy ∼
Cst

d(x, y)2[φ]

and

EνN[φ2
x]N[φ2

y] ∼ Cst

d(x, y)2[φ2]

where N[φ2
x] denotes the recentered square field φ2

x −Eνφ2
x and

[φ2] = 2[φ] +
ε

3
+ o(ε) .

Remark: For 2D Ising, the scaling dimensions are [φ] = 1
8

(spin
field) and [φ2] = 1 (energy field).
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More precisely, for α ∈ (0, 3) and n→∞ one has∑
x,y∈B̄(0,Ln)

min

[
1,

1

d(x, y)

]α

= L3n

[
1 +

1− p−3

1− pα−3
(L(3−α)n − 1)

]
∼ 1− p−3

1− pα−3
× L(6−α)n .

What we proved is∑
x,y∈B̄(0,Ln)

Eνφxφy ∼ Cst× L(6−2[φ])n

and ∑
x,y∈B̄(0,Ln)

EνN[φ2
x]N[φ2

y] ∼ Cst× L(6−2[φ2])n .

Consistent with predictions by conformal bootsrap for 3D Ising

with long-range interactions Jxy = −(−∆Z3)
3+ε

4
xy . Critical

scaling limit believed to be a 3D CFT.
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∼ lower half-space model for conformal geometry.



Thank you for your attention.


