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The hierarchical toy model for the continuum:
Let p be an integer > 1.

Let Ly, k € Z, be the set of cubes [[7_,[aip¥, (a; + 1)p¥) with
ai,...,aq € Ng. The cubes of IL, form a partition of the
octant [0, 00)9.

Hence T = UkezILi naturally has the structure of a doubly
infinite tree which is organized into layers or generations Lj:
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Forget [0,00)¢ and R¥ and just keep the tree.

Define the substitute for the continuum “L_.":= leafs at
infinity.

More precisely, these are the infinite bottom-up paths in the
tree.

A path representing an element x € L_,
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L_. is analogue of R and L, is analogue of lattice Z9 C R¢,
We will study a highly non-Gaussian random field ¢ = (¢x)xeL,
indexed by the layer ILy. This will involve the bottom half of
the tree T>o = Ux>oLk. If x,y € LLg, define their distance as
d(x,y) := pX where k is the depth where the two paths
leading from the bottom of the tree to x and y merge.

Ry
<

We also define the origin 0 € ILg as the leftmost path/lattice
site. Thus #(B(0, p¥)) = p?* as for the volume of balls in R9.




The massless fractional Gaussian field:



The massless fractional Gaussian field:

To every litter G of Mama Cat z € L, associate a centered
Gaussian random vector ((x)xec with p? x p? covariance
matrix made of 1 — p~9's on the diagonal and —p~9's
everywhere else. We impose that Gaussian vectors
corresponding to different layers or different litters are
independent.



The massless fractional Gaussian field:

To every litter G of Mama Cat z € L, associate a centered
Gaussian random vector ((x)xec with p? x p? covariance
matrix made of 1 — p~9's on the diagonal and —p~9's
everywhere else. We impose that Gaussian vectors
corresponding to different layers or different litters are
independent. We have ) (=0 as.
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The ancestor function: for k > 0, x € Lo, let anck(x) denote
the ancestor in L.

Let the symbol [¢] denote a parameter to be specified in
(0,2). The massless fractional Gaussian field 1y, x € Lq of
scaling dimention [¢] is given by

wx = Z pfk[¢]Caan(x) .

k>0

It satisfies

Cst
Gy = Ehyipy ~ W

at long distance.
Define the probability measure ;1 on R™ as the law of /.
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We introduce the Wick powers

L f =% — Coo
and
E = bt — 6Co2 + 3G -
as well as the couplings (g, 1) € (0,00) x R.

g is the phi-four coupling constant and x is the mass.

From now on: d =3, [¢]

= 27¢ for € > 0 small. We also fix
L = p’ for some integer ¢ > 1
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The infinite volume Gibbs measure:
For m > 0 we define the probability measure v, on R

dum(@) ~exp | = Y. {g:ot:+p:¢2:}| du(e)

x€B(0,L™)
and the weak limit v = lim,,_ o ;,. We let

_ pc—1

v = = ~ Cst x €.
& T 36l (1—p3)
For g in an interval of size ~ €2 aroung g, we constructed a
critical mass ji.(g) for which the infinite volume measure v is
critical, i.e., E,¢xpy — 0 when d(x,y) — oo and

ZXGLO Eu¢0¢x =00
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Main result (ACG 2013)
Using a new rigorous renormalization group method, we
proved that in an spatially averaged sense

Cst
EV¢X¢Y ~ d(X, y)2[¢]

and

Cst
E, N[¢z]N[$5] ~ WS)QMQ]

where N[¢?] denotes the recentered square field ¢2 — E, ¢? and
) €
(6] = 2]+ 5 + ole)

Remark: For 2D lIsing, the scaling dimensions are [¢] = £ (spin
field) and [¢?] = 1 (energy field).
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and
> E,N[@ZIN[@F] ~ Cst x LE-2Dn
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Consistent with predictions by conformal bootsrap for 3D Ising
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More precisely, for v € (0,3) and n — oo one has

> min [1, ﬁr

x,y€B(0,L")

1 _—
—(L(3 a)n __ 1):| ~ —p3 X L(6—a)n
1—p~ 1— po-

What we proved is

_L3n |:1_|_

Z E,oxpy ~ Cst x [ (6=2[¢])n

x,yeB(0,Ln)
and
> E,N[@ZIN[@F] ~ Cst x LE-2Dn
x,y€B(0,Ln)
Consistent with predictions by conformal bootsrap for 3D Ising

with long-range interactions Jy, = —(— Azs)xy Critical
scaling limit believed to be a 3D CFT.



~ lower half-space model for conformal geometry.




Thank you for your attention.



