On a Toy Model for Three-Dimensional Conformal Probability

Abdelmalek Abdesselam
Mathematics Department, University of Virginia

Talk at Seminar on Stochastic Processes 2017
Charlottesville, March 8, 2017

Main references

For big picture:
A.A., "Towards three-dimensional conformal probability", arXiv:1511.03180[math.PR] (27 pages).

For technical details:
A.A., A. Chandra and G. Guadagni, "Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions", arXiv:1302.5971 [math.PR] (162 pages).

The hierarchical toy model for the continuum:

The hierarchical toy model for the continuum:

Let p be an integer >1.

The hierarchical toy model for the continuum:

Let p be an integer >1.
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ with $a_{1}, \ldots, a_{d} \in \mathbb{N}_{0}$. The cubes of \mathbb{L}_{k} form a partition of the octant $[0, \infty)^{d}$.

The hierarchical toy model for the continuum:

Let p be an integer >1.
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ with $a_{1}, \ldots, a_{d} \in \mathbb{N}_{0}$. The cubes of \mathbb{L}_{k} form a partition of the octant $[0, \infty)^{d}$.

Hence $\mathbb{T}=\cup_{k \in \mathbb{Z}} \mathbb{L}_{k}$ naturally has the structure of a doubly infinite tree which is organized into layers or generations \mathbb{L}_{k} :

Picture for $d=1, p=2$

Forget $[0, \infty)^{d}$ and \mathbb{R}^{d} and just keep the tree.
Define the substitute for the continuum " $\mathbb{L}_{-\infty}$ ": leafs at infinity.

Forget $[0, \infty)^{d}$ and \mathbb{R}^{d} and just keep the tree.
Define the substitute for the continuum " $\mathbb{L}_{-\infty}$ ": leafs at infinity.
More precisely, these are the infinite bottom-up paths in the tree.

A path representing an element $x \in \mathbb{L}_{-\infty}$
$\mathbb{L}_{-\infty}$ is analogue of \mathbb{R}^{d} and \mathbb{L}_{0} is analogue of lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$.
$\mathbb{L}_{-\infty}$ is analogue of \mathbb{R}^{d} and \mathbb{L}_{0} is analogue of lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$. We will study a highly non-Gaussian random field $\phi=\left(\phi_{\mathbf{x}}\right)_{\mathbf{x} \in \mathbb{L}_{0}}$ indexed by the layer \mathbb{L}_{0}. This will involve the bottom half of the tree $\mathbb{T}_{\geq 0}=\cup_{k \geq 0} \mathbb{L}_{k}$.
$\mathbb{L}_{-\infty}$ is analogue of \mathbb{R}^{d} and \mathbb{L}_{0} is analogue of lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$. We will study a highly non-Gaussian random field $\phi=\left(\phi_{x}\right)_{x \in \mathbb{L}_{0}}$ indexed by the layer \mathbb{L}_{0}. This will involve the bottom half of the tree $\mathbb{T}_{\geq 0}=\cup_{k \geq 0} \mathbb{L}_{k}$. If $\mathbf{x}, \mathbf{y} \in \mathbb{L}_{0}$, define their distance as $d(\mathbf{x}, \mathbf{y}):=p^{k}$ where k is the depth where the two paths leading from the bottom of the tree to \mathbf{x} and \mathbf{y} merge.
$\mathbb{L}_{-\infty}$ is analogue of \mathbb{R}^{d} and \mathbb{L}_{0} is analogue of lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$. We will study a highly non-Gaussian random field $\phi=\left(\phi_{x}\right)_{x \in \mathbb{L}_{0}}$ indexed by the layer \mathbb{L}_{0}. This will involve the bottom half of the tree $\mathbb{T}_{\geq 0}=\cup_{k \geq 0} \mathbb{L}_{k}$. If $\mathbf{x}, \mathbf{y} \in \mathbb{L}_{0}$, define their distance as $d(\mathbf{x}, \mathbf{y}):=p^{k}$ where k is the depth where the two paths leading from the bottom of the tree to \mathbf{x} and \mathbf{y} merge.

$\mathbb{L}_{-\infty}$ is analogue of \mathbb{R}^{d} and \mathbb{L}_{0} is analogue of lattice $\mathbb{Z}^{d} \subset \mathbb{R}^{d}$. We will study a highly non-Gaussian random field $\phi=\left(\phi_{\mathbf{x}}\right)_{\mathrm{x} \in \mathbb{L}_{0}}$ indexed by the layer \mathbb{L}_{0}. This will involve the bottom half of the tree $\mathbb{T}_{\geq 0}=\cup_{k \geq 0} \mathbb{L}_{k}$. If $\mathbf{x}, \mathbf{y} \in \mathbb{L}_{0}$, define their distance as $d(\mathbf{x}, \mathbf{y}):=p^{k}$ where k is the depth where the two paths leading from the bottom of the tree to \mathbf{x} and \mathbf{y} merge.

We also define the origin $\mathbf{0} \in \mathbb{L}_{0}$ as the leftmost path/lattice site. Thus $\#\left(\bar{B}\left(\mathbf{0}, p^{k}\right)\right)=p^{d k}$ as for the volume of balls in \mathbb{R}^{d}.

The massless fractional Gaussian field:

The massless fractional Gaussian field:

To every litter G of Mama Cat $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $\left(\zeta_{\mathrm{x}}\right)_{\mathbf{x} \in G}$ with $p^{d} \times p^{d}$ covariance matrix made of $1-p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different litters are independent.

The massless fractional Gaussian field:

To every litter G of Mama Cat $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $\left(\zeta_{\mathrm{x}}\right)_{\mathbf{x} \in G}$ with $p^{d} \times p^{d}$ covariance matrix made of $1-p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different litters are independent. We have $\sum_{x \in G} \zeta_{x}=0$ a.s.

The ancestor function: for $k \geq 0, \mathbf{x} \in \mathbb{L}_{0}$, let $\operatorname{anc}_{k}(\mathbf{x})$ denote the ancestor in \mathbb{L}_{k}.

The ancestor function: for $k \geq 0, \mathbf{x} \in \mathbb{L}_{0}$, let $\operatorname{anc}_{k}(\mathbf{x})$ denote the ancestor in \mathbb{L}_{k}.
Let the symbol $[\phi]$ denote a parameter to be specified in ($0, \frac{d}{2}$).

The ancestor function: for $k \geq 0, \mathbf{x} \in \mathbb{L}_{0}$, let $\operatorname{anc}_{k}(\mathbf{x})$ denote the ancestor in \mathbb{L}_{k}.
Let the symbol $[\phi]$ denote a parameter to be specified in $\left(0, \frac{d}{2}\right)$. The massless fractional Gaussian field $\psi_{\mathrm{x}}, x \in \mathbb{L}_{0}$ of scaling dimention $[\phi]$ is given by

$$
\psi_{\mathbf{x}}=\sum_{k \geq 0} p^{-k[\phi]} \zeta_{\mathrm{anc}_{k}(\mathbf{x})}
$$

The ancestor function: for $k \geq 0, \mathbf{x} \in \mathbb{L}_{0}$, let $\operatorname{anc}_{k}(\mathbf{x})$ denote the ancestor in \mathbb{L}_{k}.
Let the symbol $[\phi]$ denote a parameter to be specified in $\left(0, \frac{d}{2}\right)$. The massless fractional Gaussian field $\psi_{\mathrm{x}}, x \in \mathbb{L}_{0}$ of scaling dimention $[\phi]$ is given by

$$
\psi_{\mathbf{x}}=\sum_{k \geq 0} p^{-k[\phi]} \zeta_{\mathrm{anc}_{k}(\mathbf{x})}
$$

It satisfies

$$
C_{x y}:=\mathbb{E} \psi_{\mathbf{x}} \psi_{\mathbf{y}} \sim \frac{\text { Cst }}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

at long distance.

The ancestor function: for $k \geq 0, \mathbf{x} \in \mathbb{L}_{0}$, let $\operatorname{anc}_{k}(\mathbf{x})$ denote the ancestor in \mathbb{L}_{k}.
Let the symbol $[\phi]$ denote a parameter to be specified in $\left(0, \frac{d}{2}\right)$. The massless fractional Gaussian field $\psi_{\mathrm{x}}, x \in \mathbb{L}_{0}$ of scaling dimention $[\phi]$ is given by

$$
\psi_{\mathbf{x}}=\sum_{k \geq 0} p^{-k[\phi]} \zeta_{\mathrm{anc}_{k}(\mathbf{x})}
$$

It satisfies

$$
C_{x y}:=\mathbb{E} \psi_{\mathbf{x}} \psi_{\mathbf{y}} \sim \frac{\text { Cst }}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

at long distance.
Define the probability measure μ on $\mathbb{R}^{\mathbb{L}_{0}}$ as the law of ψ.

We introduce the Wick powers

$$
: \psi_{\mathbf{x}}^{2}:=\psi_{\mathbf{x}}^{2}-C_{00}
$$

and

$$
: \psi_{\mathrm{x}}^{4}:=\psi_{\mathrm{x}}^{4}-6 C_{00} \psi_{\mathrm{x}}^{2}+3 C_{00}^{2}
$$

We introduce the Wick powers

$$
: \psi_{\mathbf{x}}^{2}:=\psi_{\mathbf{x}}^{2}-C_{00}
$$

and

$$
: \psi_{\mathrm{x}}^{4}:=\psi_{\mathrm{x}}^{4}-6 C_{00} \psi_{\mathrm{x}}^{2}+3 C_{00}^{2}
$$

as well as the couplings $(g, \mu) \in(0, \infty) \times \mathbb{R}$.

We introduce the Wick powers

$$
: \psi_{\mathrm{x}}^{2}:=\psi_{\mathrm{x}}^{2}-C_{00}
$$

and

$$
: \psi_{\mathrm{x}}^{4}:=\psi_{\mathrm{x}}^{4}-6 C_{00} \psi_{\mathrm{x}}^{2}+3 C_{00}^{2}
$$

as well as the couplings $(g, \mu) \in(0, \infty) \times \mathbb{R}$.
g is the phi-four coupling constant and μ is the mass.

We introduce the Wick powers

$$
: \psi_{\mathrm{x}}^{2}:=\psi_{\mathrm{x}}^{2}-C_{00}
$$

and

$$
: \psi_{\mathrm{x}}^{4}:=\psi_{\mathrm{x}}^{4}-6 C_{00} \psi_{\mathrm{x}}^{2}+3 C_{00}^{2}
$$

as well as the couplings $(g, \mu) \in(0, \infty) \times \mathbb{R}$.
g is the phi-four coupling constant and μ is the mass.
From now on: $d=3,[\phi]=\frac{3-\epsilon}{4}$ for $\epsilon>0$ small. We also fix $L=p^{\ell}$ for some integer $\ell \geq 1$.

The infinite volume Gibbs measure:

The infinite volume Gibbs measure:

For $m \geq 0$ we define the probability measure ν_{m} on $\mathbb{R}^{\mathbb{L}_{0}}$

$$
d \nu_{m}(\phi) \sim \exp \left(-\sum_{\mathbf{x} \in \bar{B}\left(\mathbf{0}, L^{m}\right)}\left\{g: \phi_{\mathbf{x}}^{4}:+\mu: \phi_{\mathbf{x}}^{2}:\right\}\right) d \mu(\phi)
$$

and the weak limit $\nu=\lim _{m \rightarrow \infty} \nu_{m}$.

The infinite volume Gibbs measure:

For $m \geq 0$ we define the probability measure ν_{m} on $\mathbb{R}^{\mathbb{L}_{0}}$

$$
d \nu_{m}(\phi) \sim \exp \left(-\sum_{\mathbf{x} \in \bar{B}\left(\mathbf{0}, L^{m}\right)}\left\{g: \phi_{\mathbf{x}}^{4}:+\mu: \phi_{\mathbf{x}}^{2}:\right\}\right) d \mu(\phi)
$$

and the weak limit $\nu=\lim _{m \rightarrow \infty} \nu_{m}$. We let

$$
\bar{g}_{*}=\frac{p^{\epsilon}-1}{36 L^{\epsilon}\left(1-p^{-3}\right)} \sim \operatorname{Cst} \times \epsilon
$$

The infinite volume Gibbs measure:

For $m \geq 0$ we define the probability measure ν_{m} on $\mathbb{R}^{\mathbb{L}_{0}}$

$$
d \nu_{m}(\phi) \sim \exp \left(-\sum_{\mathbf{x} \in \bar{B}\left(\mathbf{0}, L^{m}\right)}\left\{g: \phi_{\mathbf{x}}^{4}:+\mu: \phi_{\mathbf{x}}^{2}:\right\}\right) d \mu(\phi)
$$

and the weak limit $\nu=\lim _{m \rightarrow \infty} \nu_{m}$. We let

$$
\bar{g}_{*}=\frac{p^{\epsilon}-1}{36 L^{\epsilon}\left(1-p^{-3}\right)} \sim \text { Cst } \times \epsilon
$$

For g in an interval of size $\sim \epsilon^{\frac{3}{2}}$ aroung \bar{g}_{*} we constructed a critical mass $\mu_{c}(g)$ for which the infinite volume measure ν is critical, i.e., $\mathbb{E}_{\nu} \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rightarrow 0$ when $d(\mathbf{x}, \mathbf{y}) \rightarrow \infty$ and $\sum_{\mathbf{x} \in \mathbb{L}_{0}} \mathbb{E}_{\nu} \phi_{\mathbf{0}} \phi_{\mathbf{x}}=\infty$.

Main result (ACG 2013)

Main result (ACG 2013)
Using a new rigorous renormalization group method, we proved that in an spatially averaged sense

$$
\mathbb{E}_{\nu} \phi_{\mathbf{x}} \phi_{\mathbf{y}} \sim \frac{\text { Cst }}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

and

$$
\mathbb{E}_{\nu} N\left[\phi_{\mathrm{x}}^{2}\right] N\left[\phi_{\mathbf{y}}^{2}\right] \sim \frac{\mathrm{Cst}}{d(\mathbf{x}, \mathbf{y})^{2\left[\phi^{2}\right]}}
$$

Main result (ACG 2013)
Using a new rigorous renormalization group method, we proved that in an spatially averaged sense

$$
\mathbb{E}_{\nu} \phi_{\mathbf{x}} \phi_{\mathbf{y}} \sim \frac{\text { Cst }}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

and

$$
\mathbb{E}_{\nu} N\left[\phi_{\mathbf{x}}^{2}\right] N\left[\phi_{\mathbf{y}}^{2}\right] \sim \frac{\mathrm{Cst}}{d(\mathbf{x}, \mathbf{y})^{2\left[\phi^{2}\right]}}
$$

where $N\left[\phi_{\mathrm{x}}^{2}\right]$ denotes the recentered square field $\phi_{\mathrm{x}}^{2}-\mathbb{E}_{\nu} \phi_{\mathrm{x}}^{2}$ and

$$
\left[\phi^{2}\right]=2[\phi]+\frac{\epsilon}{3}+o(\epsilon) .
$$

Main result (ACG 2013)
Using a new rigorous renormalization group method, we proved that in an spatially averaged sense

$$
\mathbb{E}_{\nu} \phi_{\mathbf{x}} \phi_{\mathbf{y}} \sim \frac{\text { Cst }}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

and

$$
\mathbb{E}_{\nu} N\left[\phi_{\mathbf{x}}^{2}\right] N\left[\phi_{\mathbf{y}}^{2}\right] \sim \frac{\text { Cst }}{d(\mathbf{x}, \mathbf{y})^{2\left[\phi^{2}\right]}}
$$

where $N\left[\phi_{\mathrm{x}}^{2}\right]$ denotes the recentered square field $\phi_{\mathrm{x}}^{2}-\mathbb{E}_{\nu} \phi_{\mathrm{x}}^{2}$ and

$$
\left[\phi^{2}\right]=2[\phi]+\frac{\epsilon}{3}+o(\epsilon) .
$$

Remark: For 2D Ising, the scaling dimensions are $[\phi]=\frac{1}{8}$ (spin field) and $\left[\phi^{2}\right]=1$ (energy field).

More precisely, for $\alpha \in(0,3)$ and $n \rightarrow \infty$ one has

$$
\begin{gathered}
\sum_{\mathbf{x}, \mathbf{y} \in \bar{B}\left(0, L^{n}\right)} \min \left[1, \frac{1}{d(\mathbf{x}, \mathbf{y})}\right]^{\alpha} \\
=L^{3 n}\left[1+\frac{1-p^{-3}}{1-p^{\alpha-3}}\left(L^{(3-\alpha) n}-1\right)\right] \sim \frac{1-p^{-3}}{1-p^{\alpha-3}} \times L^{(6-\alpha) n} .
\end{gathered}
$$

More precisely, for $\alpha \in(0,3)$ and $n \rightarrow \infty$ one has

$$
\begin{gathered}
\sum_{x, \mathbf{y} \in \bar{B}\left(0, L^{n}\right)} \min \left[1, \frac{1}{d(\mathbf{x}, \mathbf{y})}\right]^{\alpha} \\
=L^{3 n}\left[1+\frac{1-p^{-3}}{1-p^{\alpha-3}}\left(L^{(3-\alpha) n}-1\right)\right] \sim \frac{1-p^{-3}}{1-p^{\alpha-3}} \times L^{(6-\alpha) n} .
\end{gathered}
$$

What we proved is

$$
\sum_{\mathbf{y} \in \bar{B}\left(0, L^{n}\right)} \mathbb{E}_{\nu} \phi_{\mathbf{x}} \phi_{\mathbf{y}} \sim \operatorname{Cst} \times L^{(6-2[\phi]) n}
$$

and

$$
\sum_{x, y \in \bar{B}\left(0, L^{n}\right)} \mathbb{E}_{\nu} N\left[\phi_{\mathrm{x}}^{2}\right] N\left[\phi_{\mathbf{y}}^{2}\right] \sim \operatorname{Cst} \times L^{\left(6-2\left[\phi^{2}\right]\right) n} .
$$

More precisely, for $\alpha \in(0,3)$ and $n \rightarrow \infty$ one has

$$
\begin{gathered}
\sum_{x, y \in \bar{B}\left(0, L^{n}\right)} \min \left[1, \frac{1}{d(\mathbf{x}, \mathbf{y})}\right]^{\alpha} \\
=L^{3 n}\left[1+\frac{1-p^{-3}}{1-p^{\alpha-3}}\left(L^{(3-\alpha) n}-1\right)\right] \sim \frac{1-p^{-3}}{1-p^{\alpha-3}} \times L^{(6-\alpha) n} .
\end{gathered}
$$

What we proved is

$$
\sum_{: y \in \bar{B}\left(0, L^{n}\right)} \mathbb{E}_{\nu} \phi_{\mathbf{x}} \phi_{\mathbf{y}} \sim \operatorname{Cst} \times L^{(6-2[\phi]) n}
$$

and

$$
\sum_{x, y \in \bar{B}\left(0, L^{n}\right)} \mathbb{E}_{\nu} N\left[\phi_{\mathrm{x}}^{2}\right] N\left[\phi_{\mathbf{y}}^{2}\right] \sim \mathrm{Cst} \times L^{\left(6-2\left[\phi^{2}\right]\right) n} .
$$

Consistent with predictions by conformal bootsrap for 3D Ising with long-range interactions $J_{x y}=-\left(-\Delta_{\mathbb{Z}^{3}}\right)_{x y}^{\frac{3+\epsilon}{4}}$.

More precisely, for $\alpha \in(0,3)$ and $n \rightarrow \infty$ one has

$$
\begin{gathered}
\sum_{x, y \in \bar{B}\left(0, L^{n}\right)} \min \left[1, \frac{1}{d(\mathbf{x}, \mathbf{y})}\right]^{\alpha} \\
=L^{3 n}\left[1+\frac{1-p^{-3}}{1-p^{\alpha-3}}\left(L^{(3-\alpha) n}-1\right)\right] \sim \frac{1-p^{-3}}{1-p^{\alpha-3}} \times L^{(6-\alpha) n} .
\end{gathered}
$$

What we proved is

$$
\sum_{, y \in \bar{B}\left(0, L^{n}\right)} \mathbb{E}_{\nu} \phi_{\mathbf{x}} \phi_{\mathbf{y}} \sim \operatorname{Cst} \times L^{(6-2[\phi]) n}
$$

and

$$
\sum_{x, y \in \bar{B}\left(0, L^{n}\right)} \mathbb{E}_{\nu} N\left[\phi_{\mathrm{x}}^{2}\right] N\left[\phi_{\mathbf{y}}^{2}\right] \sim \operatorname{Cst} \times L^{\left(6-2\left[\phi^{2}\right]\right) n}
$$

Consistent with predictions by conformal bootsrap for 3D Ising with long-range interactions $J_{x y}=-\left(-\Delta_{\mathbb{Z}^{3}}\right)_{x y}^{\frac{3+\epsilon}{4}}$. Critical scaling limit believed to be a 3D CFT.

\sim lower half-space model for conformal geometry.

Thank you for your attention.

