
Notes on the Brydges-Kennedy-Abdesselam-Rivasseau
forest interpolation formula

There are many instances in mathmatical physics where one tries to under-
stand joint probability measures for a collection of random variables X1, . . . , XN ,
with N large, of the form

e
−

NP
i=1

V (xi)
dµC(x)

where dµC is a Gaussian measure on RN . The dependence between these ran-
dom variables is entierly due to the Gaussian measure which, in general, is given
by covariances

Cij = cov(Xi, Xj)

which do not vanish for i 6= j. A typical procedure one uses in this type of
problem is to try to interpolate between the given covariance matrix C and the
covariance obtained by killing the off-diagonal entries. The outcome is what is
called a cluster expansion in the constructive field theory literature. The first
such expansions appeared in the context of the construction of the φ4 model in
2 dimensions and in the infinite volume limit. They are due to Glimm, Jaffe
and Spencer [11, 12, 10]. See also [21, 17] for a simpler presentation on the
Zd lattice, instead of the continuum model. Later on, a new simpler inter-
polation/expansion method was introduced for the same purpose by Brydges,
Battle and Federbush [7, 4, 5]. The Brydges-Kennedy-Abdesselam-Rivasseau
or BKAR formula offers yet another simpler interpolation formula. It allows
the resummation of QFT Feynman diagrams according to spanning subtrees.
It can also be used in order to prove the Penrose-Rota inequality for Mayer ex-
pansion coefficients. What follows is a self-contained presentation of the BKAR
identity which is nothing more than a sophisticated form of the Fundamental
Theorem of Calculus. The BKAR formula was dubbed the “constructive Swiss
knife” in [19].

Let us consider a finite set E 6= ∅, and let us denote by E(2) the set unordered
pairs {a, b}, where a and b are any distinct elements in E. Of course |E(2)| =(

|E|
2

)
. We will consider the space RE(2)

of multiplets s = (sl)l∈E(2) indexed

by pairs l ∈ E(2), and functions defined on a particular compact convex set
KE in this space. Let ΠE denote the set of partitions of E. For any partition
π = {X1, . . . Xq} in ΠE we associate a vector vπ = (vπ,l)l∈E(2) defined as

vπ,l = 1l{∃i,1≤i≤q,l⊂Xi} .

Now KE is by definition the convex hull of the vectors vπ, for π ∈ ΠE . It is
easy to see that KE affinely generates RE(2)

. Indeed, let 0̂ be the partition
entierly made of singletons, and for any pair l ∈ E(2) let l̂ denote the partition
made of the two element set l and the singletons {a}, for a ∈ E\l. Then, the
vectors vl̂ − v0̂, for l ∈ E(2) form a basis of the vector space RE(2)

. As a result,
the open domain ΩE = K̊E is nonempty, and KE is equal to the closure Ω̄E .
Let Ck(Ω̄E) denote the usual space of functions of class Ck on the domain ΩE
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which, together with their derivatives up to order k, admit uniformly continuous
extentions to the closure KE = Ω̄E (see, e.g., [3]). It is easy to see that for any
f in C1(Ω̄E) the Fundamental Theorem of Calculus

f(t) = f(s) +

1∫
0

du
d

du
f((1− u)t + us)

holds for any multiplets s and t in KE , even on the boundary. This will be used
repeatedly in the following.

Now a simple graph with vertex set E can be thought of as a subset of the
complete graph E(2). A forest F is a graph with no circuits, and it is made
of a vertex-disjoint collection of trees. Let F be a forest, and let ~h = (hl)l∈F

be a vector of real parameters indexed by the edges l in the forest F. To such
data we canonically associate a multiplet s(F,~h) = (s(F,~h)l)l∈E(2) in RE(2)

as
follows. Let a, and b be two distinct elements in E. If a and b belong to two
distinct connected components of the forest F, then s(F,~h){a,b} = 0. Otherwise
let, by definition, s(F,~h){a,b} = min

l
hl where l belongs to the unique path in

the forest F joining a to b. We are now ready to state the BKAR formula.

Theorem 1 [8, 1] Let f ∈ C |E|−1(Ω̄E), and let 1 ∈ RE(2)
denote the multiplet

with all entries equal to one. This is also the same as v1̂ where 1̂ is the single
block partition {E}. We then have

f(1) =
∑

F forest

∫
[0,1]F

d~h
∂|F|f∏
l∈F ∂sl

(
s(F,~h)

)
where the sum is over all forests F with vertex set E, the notation d~h is for
the Lebesgue measure on the set of parameters [0, 1]F, the partial derivatives of
f are with respect to the entries indexed by the pairs belonging to F, and the
evaluation of these derivatives is at the ~h dependent point s(F,~h). Such points
belong to KE.

Note that the empty forest always occurs and its contribution is f(0) =
f(v0̂). There are many proofs of this result [8, 1, 9], but we believe the most
natural and most easily generalizable is the one given in [2, §2]. It is recalled
here for the sake of completeness. We will first prove an ordered forest analog
of Theorem 1. A possibly empty sequence F = (l1, . . . , lp) of pairs li in E(2)

is called an ordered forest or o-forest if the corresponding set F = {l1, . . . , lp}
is a forest. Let us denote by ∆p the simplex {~ρ ∈ Rp|1 ≥ ρ1 ≥ · · · ≥ ρp ≥
0}. Given a vector of parameters ~ρ = (ρ1, . . . , ρp) in ∆p we also define the
multiplet t(F, ~ρ) = (t(F, ~ρ)l)l∈E(2) as follows. Let l = {a, b}, with a and b
distinct elements in E. If a and b fall in distinct connected components of the
full forest {l1, . . . , lp} then we set t(F, ~ρ)l = 0. Else we let t(F, ~ρ)l = ρq where q
is the smallest index 1 ≤ q ≤ p such that a and b are connected by the subforest
{l1, l2, . . . , lq}. The following important property is an easy consequence of this
definition.
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Proposition 1 For any o-forest F = (l1, . . . , lp) and vector ~ρ ∈ ∆p, the multi-
plet t(F, ~ρ) belongs to KE = Ω̄E.

Proof: Indeed one can write the convex combination

t(F, ~ρ) = (1− ρ1)v0̂ + (ρ1 − ρ2)vπ1 + · · ·+ (ρr−1 − ρr)vπr−1 + ρrvπr

where πq is the partition of connected components of the forest {l1, l2, . . . , lq}.
Note that we used the fact that π0 = 0̂.

Theorem 2 Under the same hypotheses as in the previous theorem one has

f(1) =
∑

F=(l1,...,lp)
o−forest

∫
∆p

d~ρ
∂pf

∂sl1 . . . ∂slp

(t(F, ~ρ))

where the summation allows all possible lenghts p for the o-forest F , including
p = 0.

Proof: We will prove by induction on r ≥ 1 that

f(1) =
∑
p<r

∑
F=(l1,...,lp)

o−forest

∫
∆p

d~ρ
∂pf

∂sl1 . . . ∂slp

(t(F, ~ρ))

+
∑

F=(l1,...,lr)
o−forest

∫
∆r

d~ρ
∂rf

∂sl1 . . . ∂slr

(
t̂(F, ~ρ)

)
(1)

where t̂(F, ~ρ)l is defined in the same way as t(F, ~ρ)l except that if l does not fall
inside a connected component of {l1, . . . , lr} one sets t̂(F, ~ρ)l equal to the last
parameter ρr instead of zero. Note that t̂(F, ~ρ) is still in the convex KE , since

t̂(F, ~ρ) = t(F, ~ρ) + ρr(v1̂ − vπr)
= (1− ρ1)v0̂ + (ρ1 − ρ2)vπ1 + · · ·+ (ρr−1 − ρr)vπr−1 + ρrv1̂ . (2)

Now by the Fundamental Theorem of Calculus,

f(1) = f(v1̂) = f(v0̂) +

1∫
0

dρ1
d

dρ1
f(ρ1v1̂ + (1− ρ1)v0̂)

= f(0) +
∑

l1∈E(2)

1∫
0

dρ1
∂f

∂sl1

(ρ1v1̂)

which is Eq. (1) for r = 1, as can be checked form the given definitions. Suppose
(1) has been proven for r ≥ 1, and consider the integrand

∂rf

∂sl1 . . . ∂slr

(
t̂(F, ~ρ)

)
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of any particular term in the second sum. Using (2) and introducing a new
parameter ρr+1, we rewrite the argument of the derivative of f as

t̂(F, ~ρ) = (1− ρ1)v0̂ + (ρ1 − ρ2)vπ1 + · · ·

+(ρr−1 − ρr)vπr−1 + (ρr − ρr+1)vπr + ρr+1v1̂

∣∣
ρr+1=ρr

We again use the Fundamental Theorem of Calculus with respect to ρr+1 to
interpolate between ρr+1 = ρr and ρr+1 = 0, hence

∂rf

∂sl1 . . . ∂slr

(
t̂(F, ~ρ)

)
=

∂rf

∂sl1 . . . ∂slr

(t(F, ~ρ))

+

ρr∫
0

dρr+1

∑
lr+1

∂r+1f

∂sl1 . . . ∂slr∂slr+1

(
t̂((F, lr+1), (~ρ, ρr+1))

)
where the sum is over pairs lr+1 corresponding to the nonzero entries of v1̂−vπr .
This is tantamount to summing over all pairs not falling inside a connected
component of F , i.e., all pairs one can append to F in order to produce an
o-forest of length r+1. This immediately implies identity (1) for r+1. Finally,
the identity (1) reduces to the statement of Theorem 2 as soon as r reaches
|E| − 1. This is because when r = |E| − 1 the second sum in (1) is over ordered
connecting trees F for which t̂(F, ~ρ) and t(F, ~ρ) are the same.
Proof of Theorem 1: Starting from the identity in Theorem 2 we collect the
o-forests corresponding to an unordered forest F = {l1, . . . , lp}. This contributes∑

σ∈Sp

∫
1>ρ1>···>ρp>0

d~ρ
∂|F|f∏
l∈F ∂sl

(t(F σ, ~ρ)) (3)

where we ignored some set of measure zero, and used the notation F σ =
(lσ(1), . . . , lσ(p)). Now define the family (rather than sequence) of variables
~h = (hl)l∈F by letting hσ(q) = ρq for any q, 1 ≤ q ≤ p. One can check from the
previous definitions that

t(F σ, ~ρ) = s(F,~h)

As a result, the quantity (3) becomes∑
σ∈Sp

∫
1>hlσ(1)

>···>hlσ(p)
>0

d~h
∂|F|f∏
l∈F ∂sl

(
s(F,~h)

)
=

∫
[0,1]F

d~h
∂|F|f∏
l∈F ∂sl

(
s(F,~h)

)
by combining the simplices of integration accounting for the relative ordering
of the parameters into the full cube [0, 1]F. The statement about the arguments
s(F,~h) belonging to KE follows from Prop. 1.

We will now deduce a few lemmas as corollaries of the BKAR forest formula.

Lemma 1 Again let us consider a finite set E and let us denote by E(2) the set
of unordered pairs l = {a, b} in E. Let V{a,b} be a collection of complex numbers
indexed by E(2). Then∑

g E

∏
l∈g

(
e−Vl − 1

)
=

∑
T E
T tree

∫
[0,1]T

d~h

{∏
l∈T

(−Vl)

}
e
−

P
l∈E(2) s(T,~h)lVl . (4)
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Here g is summed over all simple graphs (i.e. subsets of E(2)) which connect
E. We abreviate this property by the notation g  E. On the right-hand side
the sum is on spanning trees T which connect E. The notation s(T,~h) is as in
Theorem 1.

Proof: This is a consequence of Theorem 1 and the uniqueness of the Möbius
inverse. Given any nonempty subset X ⊂ E, let γ1(X) denote the expression
analogous to the left-hand side of (4) for X instead of E. Namely one sums
over graphs g ⊂ X(2) connecting X, and the Vl are the ones coming from E by
restriction:

γ1(X) =
∑
g X

∏
l∈g

(
e−Vl − 1

)
.

Likewise let γ2(X) be the expression analogous to the right-hand side of (4) for
X instead of E. For any partition π ∈ ΠE we define

c1(π) =
∏
X∈π

γ1(X)

and
c2(π) =

∏
X∈π

γ2(X) .

Let us also define
d(π) =

∏
l∈E(2)

[
e−1l{∃X∈π,l⊂X} Vl

]
.

Let us denote the natural order relation on the partition lattice ΠE by �, i.e.,
one writes π � π′ if partition π is a refinement of partition π′. We will first
show that

d(π) =
∑
π′�π

c1(π′) .

Indeed, writing

e−1l{∃X∈π,l⊂X} Vl = 1 + 1l{∃X ∈ π, l ⊂ X} (e−Vl − 1)

and expanding one has

d(π) =
∑

g⊂E(2)

1l
{

∀l ∈ g
∃X ∈ π, l ⊂ X

} ∏
l∈g

(
e−Vl − 1

)
.

Let us denote by π(g) ∈ ΠE the partition of connected components of a graph
g ∈ E(2). We then have by collecting the outcome of the expansion with respect
to the connected components

d(π) =
∑

π′∈ΠE

∑
g⊂E(2)

π(g)=π′

1l
{

∀l ∈ g
∃X ∈ π, l ⊂ X

} ∏
l∈g

(
e−Vl − 1

)

=
∑
π′�π

∏
X∈π′

 ∑
g X

∏
l∈g

(
e−Vl − 1

)
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as wanted. Now we also have

d(π) =
∏
X∈π

∏
l∈X(2)

e−Vl .

For any such X we consider the function

fX(s) =
∏

l∈X(2)

e−slVl

for multiplets s = (sl)l∈X(2) and apply Theorem 1 to it, thus obtaining∏
l∈X(2)

e−Vl = fX(1)

=
∑

FX forest on X

∫
[0,1]FX

d~hX
∂|FX |fX∏
l∈FX

∂sl

(
s(FX ,~hX)

)

=
∑

FX forest on X

∫
[0,1]FX

d~hX

 ∏
l∈FX

(−Vl)

 e
−

P
l∈X(2) s(FX ,~hX)lVl .

Now again collecting the terms componentwise, one can rewrite the latter ex-
pression as∏
l∈X(2)

e−Vl =

∑
πX∈ΠX

∏
Y ∈πX

 ∑
TY Y
TY tree

∫
[0,1]TY

d~hY

 ∏
l∈TY

(−Vl)

 e
−

P
l∈Y (2) s(TY ,~hY )lVl

 .

This is because of the definition of the s(F,~h)l in the BKAR formula. These
vanish for pairs which are not inside a connected component. Whereas for pairs
l which are inside a connected component, the s(F,~hl) only depend on the edges
of the forest F which are in that component. Now∏

l∈X(2)

e−Vl =
∑

πX∈ΠX

∏
Y ∈πX

γ2(Y )

and as a result

d(π) =
∏
X∈π

 ∑
πX∈ΠX

∏
Y ∈πX

γ2(Y )


=

∑
π′�π

∏
Y ∈π′

γ2(Y )

where we collected the blocks of the partitions πX , for X a block of π, into a
single partion π′ of E which is refinement of π. Hence

d(π) =
∑
π′�π

c1(π′)
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Therefore both c1 and c2 are Möbius inverses of d on the partition lattice ΠE ,
and they must be equal. Specializing to c1(1̂) = c2(1̂) proves the lemma.

The following tree graph inequality, initially due to Brydges, Battle and
Federbush (see [5, 4, 18]) is useful when performing Mayer expansions for a
gas of particles with unbounded interaction potential energies.

Lemma 2 Under the same hypotheses as in Lemma 1, let us assume that the
numbers Vl satisfy, in addition, the following stability hypothesis: there are
nonnegative numbers Ua, for a ∈ E, such that for any subset S ⊂ E one has∣∣∣∣∣∣

∑
l∈S(2)

Vl

∣∣∣∣∣∣ ≤
∑
a∈S

Ua .

Then the following inequality holds∣∣∣∣∣∣
∑
g E

∏
l∈g

(
e−Vl − 1

)∣∣∣∣∣∣ ≤ e
P

a∈E Ua
∑
T E
T tree

∏
l∈T

|Vl| .

Proof: This is an easy consequence of Lemma 1 and the fact that s(T,~h) ap-
pearing in the BKAR formula is in KE , i.e., is a convex combination of partition
vectors. Indeed, for any given T and ~h as in (4), one can find nonnegative num-
bers λ1, . . . , λp, satisfying

∑p
q=1 λq = 1, as well as partitions π1, . . . , πp ∈ ΠE

such that

s(T,~h) =
p∑

q=1

λqvπq .

Therefore

e
−

P
l∈E(2) s(T,~h)lVl = exp

− p∑
q=1

λq

∑
l∈E(2)

(vπq)lVl


= exp

− p∑
q=1

λq

∑
X∈πq

∑
l∈X(2)

Vl

 .

From which one derives∣∣∣e−P
l∈E(2) s(T,~h)lVl

∣∣∣ ≤ exp

 p∑
q=1

λq

∑
X∈πq

∣∣∣∣∣∣
∑

l∈X(2)

Vl

∣∣∣∣∣∣


≤ exp

 p∑
q=1

λq

∑
X∈πq

∑
a∈X

Ua


≤ exp

[∑
a∈E

Ua

]

using the stability hypothesis. Now the desired inequality clearly follows from
the formula (4).
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Lemma 3 Under the same hypotheses as in lemma 1 we have∑
g E

∏
l∈g

(−Vl) =
∑
T E
T tree

∫
[0,1]T

d~h
∏
l∈T

(−Vl)
∏

l∈E(2)\T

(1− s(T,~h)lVl) .

Proof: The proof follows the same lines as that of Lemma 1. This time

d(π) =
∏

l∈E(2)

[1l{∃X ∈ π, l ⊂ X} (1− Vl)]

and the function to which one applies the BKAR formula is

fX(s) =
∏

l∈X(2)

(1− slVl) .

The rest of the argument based on the uniquess of the Möbius inverse is the
same.

An immediate corollary is the so-called Penrose-Rota inequality which bounds
Mayer coefficients by a sum over spanning trees [14, 20].

Some history: The formula discovered by Brydges and Kennedy [8] is the one
stated in Lemma 1. They used 1 minus the parameters, so the coefficients of
the V ’s in the exponential involve a maximum over the connecting path instead
of a minimum. Their proof uses an explicit tree-sum solution for a differen-
tial equation of Hamilton-Jacobi type (see [6] for a nice presentation). It is
inspired by the Wilson-Polshinski continuous renormalization group differen-
tial equation [22, 16]. The reason why such solutions of nonlinear differential
equations can be expressed as sums over trees is explained from a combinato-
rial point of view, e.g., in [13]. The fundamental calculus version of Theorem
1 first appeared in [1]. It was there called the Brydges-Kennedy taylor forest
formula. D. Brydges calls it the Abdesselam-Rivasseau formula in his lecture at
the conference “Combinatorial Identities and Their Applications in Statistical
Mechanics”, Cambridge, April 2008:

http://www.newton.ac.uk/programmes/CSM/csmw03.html
In [19] the name Brydges-Kennedy-Abdesselam-Rivasseau formula was first

used. The proof given in [1] is purely algebraic and relies on a combinatorial
partial fraction decomposition identity. Two other proofs of this partial fraction
identity by A. Abdesselam and V. Lafforgue can be found at:

http://people.virginia.edu/ aa4cr/forestpage.html
The proof given here originates from ideas of H. Knörrer, J. Magnen and

V. Rivasseau. It was considerably generalized in [2] to expansions which allow
hypergraphs and p-PI connectivity. A similar generalization was independently
discovered by G. Poirot [15].
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