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0

Motivation and Preview

0.1 Some Motivating Examples

In most texts, there are two types of courses after measure theory

1. Applications −→ PDE’s

Text: A Guide to Distribution Theory and Fourier Transforms by
Robert Strichartz

2. Functional Analysis
(nuts and bolts)

−→ topological vector
spaces and underly-
ing theory

The point of this course is to do both. Time permitting, we will discuss prob-
ability theory on spaces of distributions, which does not appear in texts. We
will combine the two approaches into one economical approach by choosing
bases.

0.1.1 Notation

N0 = {0, 1, ...}
N = {1, 2, ...}
K = R or C
[n] = {1, 2, ..., n}
If I is a finite set, |I| = Cardinality of I.
For any sets A,B the set of functions from A to B is denoted F(A,B).
x = (x1, ..., xd) ∈ Rd

ddx = Lebesgue measure1 on Rd

1We will only consider Borel sets and Borel functions.
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4 0. MOTIVATION AND PREVIEW

|x| =
√
x2

1 + ...+ x2
d Euclidean nom

〈x〉 =
√

1 + |x|2
Note that 〈x〉 is smooth and does not vanish at the origin. This will be

used as a basic unit for analysing behavior of a function at infinity.

Multi-index Notation
α = (α1, ..., αd) ∈ Nd

0
|α| =

∑d
1 αi is the length of α

α! =
∏d
i αi!

xα = (xα1
1 , . . . , xαdd )

∂αf = ∂|α|f

∂α1
x1 · · · ∂

αd
xd

∂if = ∂f
∂xi

Notation reference
The set of smooth functions in F(U,K) with compact support is denoted
D(U).

0.1.2 Idea of Distribution

Suppose f ∈ F(Rd,R). We can evaluate f at a point x ∈ Rd to get a value
f(x) ∈ R. The idea behind distributions is that such an evaluation does not
exist in the real world.

Example 0.1.1. Suppose f ∈ F(R3,R) gives the temperature at a point x
in space. Unfortunately, a themometer cannot have zero thickness, i.e. it
does not have infinite resolution. Instead, it takes some weighted average∫

R3
ϕ(y)f(y) d3y

where ϕ(y) is a weight, preferably with mass centered at x.
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In this example,

Knowing f ⇐⇒ Knowing
∫

R3
ϕ(y)f(y) d3y

for all “test functions"ϕ

Definition 0.1.2. We define the space of test functions to be

D(Rd,K) = {ϕ ∈ F(Rd,K) | ϕ ∈ C∞, supp(ϕ) is compact}.

Observe that the map D → K sending ϕ 7→
∫

R3 ϕf is a linear form
(functional). This brings us to a definition of a distribution.

Definition 0.1.3. A continuous linear form f : D→ K is called a distri-
bution (or generalized function).

The space of distributions is the topological dual of D, which we will
denote

D′(Rd,K).

To guarantee continuity, we need a topology on D, which will make D

into a TVS. This topology will be given later, as will the topology on its
dual. Unfortunately, this topology will be complicated. However, if we relax
our requirements a little, we can get a space with a much nicer topology.

Definition 0.1.4. We define the Schwartz Space to be

S= {f ∈ F(Rd,K) | f ∈ C∞ and ‖〈x〉k∂αf(x)‖L∞ <∞ ∀ α ∈ N0, k ∈ N0}.

Observe that D⊆ S, and therefore, once Shas a topology, its topological
dual S′ will contain D′. We call S′ the space of (tempered) temperate
distributions.

Example 0.1.5 (Charge Distributions from Calc III/ Electrostatics). Sup-
pose we have a charge q at a point x with force felt ~F = q ~E(x) where ~E is
the electric field at position x. Then we have

~E = −~∇ϕ

where ϕ : R3 → R is the electric potential. Now suppose ρ is a charge
distribution. Then ρ(x)d3x gives a charge in an infinitesimal neighborhood.
We want to find the electric charge potential ϕ generated by q, i.e. we want
to solve the Poisson Equation

∆ϕ = −ρ

where ∆ is the Laplacian, and

∆ϕ =
3∑
1

∂

∂xi

(
∂ϕ

∂xi

)
=

3∑
1
∂2
i ϕ.
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Recall that Gauss’ Law gives us

~∇ · ~E = ρ

where ~∇ · ~E = div( ~E) =
∑3

1
∂Ei
∂xi

.
For simplicity, we assume the charge q is concentrated near the origin.

Moreover, we assume

• supp(ρ) ∼ {0},

• ρ is rotation invariant (radial), i.e, ρ is a function of |x| only.

We reasonably guess that φ is also radial. That is,

ϕ(x) = f(|x|).

Can we find f?

Since |x| =
√
x2

1 + x2
2 + x2

3, it follows from repeated applications of the
chain rule that

∂i|x| = ∂i(x2
1 + x2

2 + x2
3)1/2

= 1
2(x2

1 + x2
2 + x2

3)1/2∂i(x
2
1 + x2

2 + x2
3)

= 1
2|x|2xi

= xi
|x|

which is a useful little fact to know, and then applying it to our specific
situation, we have

∂iϕ = ∂if(|x|)
= f ′(|x|)∂i|x|

= f ′(|x|) xi
|x|

where “x has to avoid 0” because of the |x| in the denominator.

Let u be the unit vector pointing in the same direction as x:

u := x

|x|

and let R be the magnitude of x (the “radius”):
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R := |x|

Then we have

∇ϕ = (∂iϕ)3
i=1

=
(
f ′(|x|) xi

|x|

)3

i=1

= f ′(|x|)(xi)3
i=1
|x|

= f ′(|x|) x
|x|

= f ′(R)u

Point charge Q

We will now calculate the flux of (E)3
k=1 through a sphere of radius R

centered at Q in two different ways in order to discover an expression for Q:

1. First calculation:∫∫
S
∇ϕ • dS =

∫∫
S
f ′(R)u • dS

= f ′(R)
∫∫

S
u • dS

= f ′(R)× surface area of a sphere
= f ′(R)4πR2

2. In this second calculation, we apply the divergence theorem to get a
3-dimensional integral:

f ′(R)4πR2 =
∫∫

S
∇ϕ • dS

=
∫∫∫

B
(∇ •∇ϕ) d3x

=
∫∫∫

B
∆ϕ d3x

=
∫∫∫

B
−ρ d3x

= −Q

and so we conclude that Q = −f ′(R)4πR2. Rearranging, we have

f ′(R) = − Q

4πR2 .
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By integrating both sides with respect to R, we obtain

ϕ(x) = Q

4π|x|

General charge distribution ρ

We can express the electric potential ϕ(x) by integrating ρ(y)d3y
|x−y| over R3\{x}:

ϕ(x) = 1
4π

∫
R3r{x}

ρ(y)
|x− y|

d3y (?)

Recall −∆ϕ = ρ is a linear nonhomogeneous equation.

Point charge case:

Let δ be the 1-dimensional Dirac delta function given by

δ(t)“ = ”
{
∞ if t = 0
0 if t 6= 0

As a probability density distribution, it satisfies the property∫
R
δ(t) dt = 1.

Define the 3-dimensional Dirac delta function by

δ3(x) := δ(x1)δ(x2)δ(x3)

Then
−∆ϕ = Qδ3(x)

dipoles

A dipole is two point charges: one with charge Q and the other with oppo-
site charge −Q:
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ρ(y) = Qδ3(y − εe)−Qδ3(y)

ρ(y) = lim
ε→0

Qδ3(y − εe)−Qδ3(y)
ε

This is a nontrivial charge distribution called a dipole.

Q|e∇|δ3

Is (?) well defined? Yes it is, but we must prove it! We now go about
proving this, which takes quite a while, and won’t even be finished this
lecture...

ϕ(x) =
∫

R3
K(x, y)ρ(y) d3y

where

K(x, y) :=


1

4π|x−y| if x 6= y

0 otherwise

integral operator ρ 7→ ϕ forall K
well defined if e.g.
ρ Borel measure

|ρ(x)| ≤ C〈x〉−α

works for α > 2. But why? A quick digression((∫
R3r{x}

ρ(y)
|x− y|

d3y

has a problem at “y near x” and a problem at “y near ∞”

1. First, the problem at infinity...

Change to polar coords.

=
∫ ∞

1

1
r1+α 4πr3−1 dr

=
∫
|y|≥1

1
|y|1+α d

3y

So that α > 2 is necessary.
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2. Finally, the problem at x...
The ρ(y) is bounded or something near x, so it doesn’t matter. So the
expression, as far as convergence goes, behaves the same as

∫
|x−y|≤1

1
|x− y|

d3y <∞

which in polar becomes

∫ 1

0

r2

r3 dr

and therefore converges with no extra restrictions on α.

end of digression.

Differentiating ϕ

It is now our goal to differentiate ϕ(x). That is, we want to calculate the
partial derivative ∂iϕ(x). Recall equation (?):

ϕ(x) = 1
4π

∫
R3r{x}

ρ(y)
|x− y|

d3y

We might try differentiating under the integrand, but that won’t work.
So messy. Let’s use convolution...

K(x, y) = G(x− y)

where

G(x) :=


1

4π|x| if x 6= 0
0 if x = 0

that is, K is a convolution kernel.

ϕ(x) =
∫

R3
G(x− y)ρ(y) d3y

(note: something about G ∗ ρ and x fixed)

We will perform a change of variables using z = x − y. This uses the
global change of variables formula (or “abstract” change or variables for-
mula) from MATH 7310. If we let z = f(y) = x − y, and then compute
the Jacobian matrix J , we get J = −I3. The multiplying factor is the abso-
lute value of the Jacobian, which is |det(J)| = | − 1| = 1, so the change of
variables results in:
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ϕ(x) =
∫

R3
G(z)ρ(x− z) d3z

Now we still want to differentiate under the integral sign! But in order
to do so, we must satisfy two hypotheses:

1. The integrand must be continuously differentiable (it is).

2. We need a dominating function. Like some decay function where
|δ1ρ(x)| ≤ C〈x〉−α.

Let’s take ρ ∈ S(R3; R)
....fill in the blanks here...by repeatedly applying differentiation under

the integrand....

ϕisC∞

(δϕ)(x) =
∫

R3
G(z)(δρ)(x− z) d3z

1
4π

∫
R3r{0}

1
|z|

(δρ)(x− z) d3z (1)

Back to a point charge Q = 1

−δ
( 1

4π|z|

)
= δ3(z)

let’s check it

δ

δzi

1
|z|

= − zi
|z|3

By differentiating again, we obtain

δ2
i

1
|z|

= − 1
|z|3
− zi(−3)|z|−4 zi

|z|

= −|z|−3 + 3 z2
i

|z|5

We wish to apply Integration By Parts to (∗), but we can’t do it because
there is a problem at 0. So we have to do another step first. This will be
explained next lecture!

Now, we continue to seek ρ where −∆ϕ = ρ ∈ S(R3,R). Recall that

ϕ(x) := 1
4π

∫
R3−{0}

1
|x− y|

ρ(y)d3y
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where ϕ is C∞. A change of variables gives us

ϕ(x) = 1
4π

∫
R3−{0}

1
|y|
ρ(x− y)d3y.

We thus have

|∆ϕ|(x) = 1
4π

∫
R3−{0}

1
|y|

∆ρ(x− y)d3y.

We want to integrate by parts, keeping in mind that ∆ 1
|y| = 0 for y 6= 0;

first, we propose a lemma.

Lemma. There exists an even C∞ function χ : R→ R such that 0 ≤ χ ≤ 1,
χ = 1 on [−1, 1], χ = 0 on R− (−2, 2).

−2 −1 1 2

−2

−1

1

2

x

y

Graph of χ(x):

A proof of this lemma appears in the toolkit section of our course. For now,
we take the lemma for granted and consider χ as described in the statement.
Define ψ : R3 → R by ψ(x) = χ(|x|). By definition, this function ψ is radial.
Note that ψ is also C∞ because it is the composition of C∞ functions: |x| is
C∞ except at 0, and in a neighborhood of 0, χ is a constant function equal
to 1.

Using the dominated convergence theorem, we have

lim
n→∞

∫
R3−{0}

1− ψ(nz)
|z|

∆ρ(x− z)d3z = (∆ϕ)(x).

The graph of 1 − ψ(nz) looks like the graph below. Here, the red lines no
longer end at −1 and 1; they end at −1/n and 1/n.
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−2 −1 1 2

−2

−1

1

2

x

y

Allowing n to go to infinity, the graph of 1−ψ(nz) tends to the graph below.

−2 −1 1 2

−2

−1

1

2

x

y

Therefore
∆ϕ = lim

n→∞

∫
R3

1− ψ(nz)
|z|

∆ρ(x− z)d3z,

where 1−ψ(nz)
|z| is C∞ and we can apply integration by parts. Let

dv = ∆zρ(x− z)⇒ v = ρ(x− z)

and
u = 1− ψ(nz)

|z|
⇒ du = ∆z

1− ψ(nz)
|z|

so that

(∆ϕ)(x) = lim
n→∞

(1− ψ(nz)
|z|

ρ(x− z)
∣∣∣
R3

+ 1
4π

∫
R3

∆z

(1− ψ(nz)
|z|

)
ρ(x− z)d3z

)
= lim

n→∞
1

4π

∫
R3

∆z

(1− ψ(nz)
|z|

)
ρ(x− z)d3z.
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Now we note that on |z| ≤ 1/n, ∆z(1−ψ(nz)
|z| ) = 0 so that we need only

determine the behavior of ∆z(1−ψ(nz)
|z| ) for |z| > 1/n. We have

∆z

(1− ψ(nz)
|z|

)
=

3∑
i=1

∂2

∂z2
i

(1− ψ(nz)
|z|

)
and we apply the Leibniz rule so that

∆z

(1− ψ(nz)
|z|

)
=

3∑
i=1

[
∂2

∂z2
i

(1− ψ(nz)
|z|

)
+ 2∂(1− ψ(nz))

∂zi

∂(1/|z|)
∂zi

+ ∂2

∂z2
i

( 1
|z|

)]
.

We have ∂2

∂z2
i

(
1
|z|

)
= 0, so

∆z

(1− ψ(nz)
|z|

)
= −n

2(∆ψ)(nz)
|z|

− 2n(∇ψ)(nz) · ∇
( 1
|z|

)
which equals zero when |z| ≤ 2/n.

Substituting back, we have

(∆ϕ)(x) = 1
4π lim

n→∞

∫
{ 1
n
≤|z|≤ 2

n
}

(
−n2

|z|
(∆ϕ)(nz) + 2n

(
∇ψ(nz) · z

|z|3
))

ρ(x−z)d3z

where the limit is guaranteed to exist due to an application of the dominated
convergence theorem. Note that as n→∞, we have { 1

n ≤ |z| ≤
2
n} shrinks

to the origin, so ρ(x − z) ∼ ρ(x). With that in mind, we consider the
following:

1
4π

∫
{ 1
n
≤|z|≤ 2

n
}

(−n2

|z|
(∆ϕ)(nz) + 2n

(
∇ψ(nz) · z

|z|3
))
ρ(x− z)d3z

= E + 1
4π

∫
{ 1
n
≤|z|≤ 2

n
}

(−n2

|z|
(∆ϕ)(nz) + 2n

(
∇ψ(nz) · z

|z|3
))
ρ(x)d3z

where E is an error term that we will attempt to bound. We note that that

|E| ≤ 1
4π

∫
{ 1
n
≤|z|≤ 2

n
}

(n2

|z|
|∆ψ(nz)|+ 2n|∇ψ(nz)| 1

|z|2
)
|ρ(x− z)− ρ(x)|d3z

where |∆ψ(nz)| and |∇ψ(nz)| are both bounded by some appropriate con-
stants. We have

|E| ≤
3∑
i=1
||∂iρ||L∞ |z|

i.e. ρ(x− z) = f(t)|t=1 where f(t) = ρ(x− (−z)). We have

f(1)− f(0) =
∫
f ′(t)dt =

∫ 1

0
(

3∑
i=1

(−zi)∂iρ(x− tz))dt < ||∂iρ||L∞ .
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Therefore, for some constant C we have

|E| ≤ C
∫
{ 1
n
≤|z|≤ 2

n
}

(
n2

|z|
+ 2n
|z|

)
d3z

so that the u-substitution µ = nz grants us

|E| ≤
∫
{1≤|µ|≤2}

(
n2 + 2n

|µ|/n

) 1
n3d

3µ→ 0

so we’ve shown that (∆ϕ)(x) = ρ(x)C. All that remains is to show that
C = −1. Recall that

C = 1
4π lim

n→∞

∫
{ 1
n
≤|z|≤ 2

n
}

(
−n2

|z|
∆ψ(nz) + 2n(∇ψ)(nz) z

|z|3

)
d3z

where we can drop the limit because C is a constant. We replace the z here
with a new variable z/n and obtain

C =
∫
{1≤|z|≤2}

(−1
|z|

(∆ψ)(z) + 2(∇ψ)(z) z

|z|3
)
d3z

where 2(∇ψ)(z) z
|z|3 = χ′(|z|) 1

|z|2 . Note ψ(z) = χ(|z|) and ∂iψ(z) = χ′(|z|) zi|z|
so

∂2
i ψ(z) = χ′(|z|) zi

|z|
zi
|z|

+ χ′(|z|)
|z|

− χ′(|z|)zi
|z|2

zi
|z|
.

Therefore

(∆ψ)(z) = χ′(|z|) + 3χ
′(|z|)
|z|

− χ′(|z|)
|z|

= χ′′(|z|) + 2χ′(|z|)
|z|

=⇒ C = 1
4π

∫
{1≤|z|≤2}

(−χ′(|z|)
|z|

− 2χ′(|z|)
|z|2

+ 2χ′(|z|)
|z|2

)
d3z.

We use spherical coordinates with r = |z| to rewrite

C = 1
4π

∫ 2

1

χ′(r)
r

4πr2dr = −
∫ 2

1
χ′′(r)rdr

= −χ′(r)
∣∣∣2
1

+
∫ 2

1
χ′(r)dr

= χ(r)− χ(1)
= −1.

Therefore, we have established that −∆ϕ = ρ. We remark here that the
proof of this result was rather complicated because of our use of “classical”
functions and notions of derivatives. We shall later employ the language of
distributions, which will reduce tedious computations considerably.
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0.2 Multilinear and Tensor Algebra
If R is a commutative ring with identity element 1 andM,N are R-modules,
then one can construct the R-module M ⊗RN , called the tensor product
of M and N , in the following way. We first define the set of “almost finite”
functions on M ×N :

Faf (M ×N,R) := {f ∈ F(M ×N,R) | f(m,n) = 0 for all but finitely many (m,n) ∈M ×N}
∼=
⊕
M×N

R

Faf is generated by “simple tensors” m⊗ n (m ∈M,n ∈ N) defined by

(m⊗ n)(m′, n′) =
{

1, (m,n) = (m′, n′)
0, else

Let J be the submodule of Faf generated by the set of all elements of
the form

• (m+m′)⊗ n−m⊗ n−m′ ⊗ n

• m⊗ (n+ n′)−m⊗ n−m⊗ n′

• (λm)⊗ n− λ(m⊗ n)

• m⊗ (λn)− λ(m⊗ n)

ranging over all m,m′ ∈M,n, n′ ∈ N , and all λ ∈ R. The tensor product is
then defined to be the quotient module

M ⊗R N = Faf (M ×N,R)/J

For our purposes, R = K will always be a field, hence M,N are K-vector
spaces. Recall that if V is a finite dimensional vector space and V ′ denotes
the (algebraic) dual of V , then there is a canonical isomoprhism (V ′)′ ∼= V .
That is to say, V is reflexive. For infinite dimensional vector spaces V , we
cannot hope for an isomorphism between V and its double algebraic dual,
so by reflexivity we mean that V is isomorphic to its double topological dual.

If V1, V2, . . . , Vn,W are vector spaces, we denote by Ln(V1, . . . , Vn;W )
the space of n-multilinear maps V1 × · · · × Vn →W . Later, we will demand
that these maps are continuous. If V,W are finite-dimensional K-vector
spaces, the universal property of the tensor product induces a canonical
isomorphism

V ′ ⊗W ′ −→ L2(V,W ; K)
φ⊗ ψ 7−→ [(v, w) 7→ φ(v)ψ(w)]
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When V,W are finite dimensional, this gives us a cheap construction of
V ⊗K W :

V ⊗K W = L2(V ′,W ′; K) (NT1)

Notice that a vector x = (x1, . . . , xd) ∈ Kd can be reinterpreted as a
function [d]→ K given by i 7→ xi. We will make use of this later.

Categories
Category FinSet FinVectK

Objects finite sets finite dimensional
K-vector spaces

Morphisms maps of sets K-linear maps

Consider the contravariant functor B= F(−,K) from the category Fin-
Set of finite sets to the category FinVectK of finite dimensional K-vector
spaces which associates to each finite set I the K-vector space F(I,K) of
dimension |I| and to each map of finite sets τ : I → J the K-linear map
B(τ) : B(J)→ B(I) given by B(τ)(f) = f ◦ τ .

Because a vector space is uniquely determined up to isomorphism by the
cardinality of any basis, the functor B is essentially surjective, i.e., for
all V ∈ FinVectK, there exists I ∈ FinSet such that V is isomorphic to B(I)
as K-vector spaces. The upshot of this fact is that any finite-dimensional
vector space (with a fixed basis) can be concretely realized as a space of
functions.

Let I, J be finite sets, and put V = F(I,K),W = F(J,K). Fix a basis
{ei | i ∈ I} of V and {fj | j ∈ J} of W . Then there is an isomorphism

V ⊗K W −→ F(I × J,K)
x⊗ y 7−→ [(i, j) 7→ xiyj ]

which associates simple tensors in V ⊗K W with functions I × J → K which
factor into the form fg where f ∈ F(I,K) and g ∈ F(J,K). Another nice
property of FinVectK is that there is a canonical isomorphism

V ′ ⊗K W −→ Hom(V,W ) (NT2)
φ⊗ y 7−→ [φ(−)y : V →W,x 7→ φ(x)y]

In summary, for finite dimensional K-vector spaces V,W , there are sev-
eral equivalent ways to define V ⊗K W :

(a) algebraically, as a quotient of Faf (V ×W,K)
(b) Hom(W ′, V )
(c) Hom(V ′,W )
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(d) L2(V ′,W ′; K)
(e) F(I × J,K), where I is a basis of V and J is a basis of W .

What about infinite dimensional spaces (e.g. Hilbert, Banach, normed)?
For such spaces V,W we cannot hope for the spaces (a)–(e) listed above to
each be equivalent to V ⊗K W ; even by taking topological duals, V ⊗K W is
“too small”. In addition to taking topological duals, we can endow V ⊗K W
with an appropriate topology. The completion V ⊗̂KW of V ⊗K W with re-
spect to this topology, called the topological tensor product, will take
the place of V ⊗K W .

We shall use the term nuclear to refer to spaces which are “effectively
finite dimensional”. Nuclear spaces V,W have the property that the def-
initions (a)–(e) above equivalently define V ⊗̂KW . The spaces D,S, D′,S′

with which we will work are nuclear and reflexive. In other words, these are
“good” spaces.

Duality Pairings

There are techniques besides taking duals and tensor products which will
be useful for us. Here, we describe the method of “duality pairing.” This is
a technique for constructing new vector spaces out of existing vector spaces
defined as finite tensor products of V and V ′, for V a finite-dimensional
vector space.

Let V be a finite-dimensional K-vector space with basis (ei)1≤i≤d. The
dual space V ′ has a basis (e′i)1≤i≤d, where e′i(ej) := δij for i, j ∈ [d]. The
following is an example of a duality pairing. For any A ∈ V ⊗ V ′ ⊗ V ⊗ V ′
and B ∈ V ′ ⊗ V ⊗ V , we associate a pairing A ◦B ∈ V ⊗ V ′ ⊗ V . The idea
is to pair the adjacent factors V ⊗ V ′ and V ′ ⊗ V which are colored here.

Here, we express the vector A◦B explicitly in terms of a basis. The vector
A can be expressed uniquely as a finite sum

A =
∑

(i,j,k,`)∈[d]4
Ai,j,k,` · ei ⊗ e′j ⊗ ek ⊗ e′`,

where each Ai,j,k,` ∈ K. And B can be expressed uniquely as

B =
∑

r,s,t∈[d]3
Br,s,t · e′r ⊗ es ⊗ et.

We then define

A ◦B :=
∑

(i,j,t)∈[d]3
Ci,j,t · ei ⊗ e′j ⊗ et,
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where
Ci,j,t :=

∑
(k,`)∈[d]2

Ai,j,k,`Bk,`,t.

To show this, we observe that the map

˜̃S : ((V ⊗ V ′)× V × V ′)× (V ′ × V × V )→ K

given by ˜̃S : (x, v1, f1,f2, v2,z) 7→ f1(v1)f2(v2)x⊗ z

is multilinear. [Here, x ∈ V ⊗ V ′, vi ∈ V and fi ∈ V ′ for i = 1, 2, and z is a
member of the final factor V .] Hence, there is a unique linear map

S̃ : ((V ⊗ V ′)⊗ V ⊗ V ′)⊗ (V ′ ⊗ V ⊗ V )→ K

such that

S̃ : (x⊗ v1 ⊗ f1 ⊗ f2 ⊗ v2 ⊗ z) 7→ f1(v1)f2(v2)x⊗ z.

Finally, we let S := S̃ι, where ι is the canonical map

ι :
(
(V ⊗ V ′)⊗ V ⊗ V ′)× (V ′ ⊗ V ⊗ V )

)
→
(
(V ⊗ V ′)⊗ V ⊗ V ′)⊗ (V ′ ⊗ V ⊗ V )

)
.

The map S is a well-defined linear map whose definition is independent
of any choice of basis on V . Therefore, we aim to show that S = T , where

T : ((V ⊗ V ′)⊗ V ⊗ V ′)× (V ′ ⊗ V ⊗ V )→ K

is such that
T : (A,B) 7→ A ◦B.

T is linear, and so it suffices to show S, T agree on basis vectors

e = (ei ⊗ e′j ⊗ ek ⊗ e′`, e′r ⊗ es ⊗ et),

for i, j, k, `, r, s, t ∈ [d]. This vector e is mapped to ei ⊗ e′j ⊗ et under both
S and T , and so the two maps agree.

The key element of this construction is the natural duality pairing between
V ′ and V given by evaluation. The map V ′×V → K given by (φ, v) 7→ φ(v)
is bilinear. Hence, there is unique linear map V ′⊗V → K such that φ⊗v 7→
φ(v).
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Note that in the explicit definition of A ◦ B, we sum over the repeated
indices k, `. It is often convenient to use Einstein’s convention that repeated
indices are automatically summed.

Ai,j,k,`Bk,`,t denotes
∑

(k,`)∈[d]
Ai,j,k,`Bk,`,t.

Example 0.2.1. Many familiar operations such as trace and matrix prod-
ucts can be cast as duality pairings. For instance, if V := Kd with canonical
basis (ei)1≤i≤d and dual basis (e′i)1≤i≤d, we have an isomorphism between
Hom(V, V ) and V ′⊗V which identifies e′i⊗ ej with the linear map fi,j such
that fi,j(ek) = 1{k = i}ej . The duality pairing sends e′i⊗ ej to e′i(ej) = δij ,
and the trace of each fi,j is δij . Hence, the trace is a duality pairing.

To illustrate the duality pairing construction construction, it is helpful to
illustrate the pairing as a pairing of centipedes’ legs. The diagram below
illustrates this particular pairing of A and B. Downward arrows, colored
purple in the “A" diagram, represent tensor factors V and upward arrows,
colored green in the “A" diagram, represent tensor factors V ′ in the un-
derlying vector spaces. The dotted lines represent pairings. Because three
arrows are now bound, we see from the diagram that A ◦B is a member of
V ⊗ V ′ ⊗ V .

In centipede diagrams, it is convent to represent incoming factors on top
of and outgoing factors on the bottom of a centipede instead of putting
both on the centipede’s bottom. This allows for compact depictions of du-
ality pairings via braid diagrams; paired factors are stacked vertically. For
example, if V = C2 with canonical basis (e1, e2), let

R ∈ Hom(V ⊗ V, V ⊗ V ) ∼= V ⊗ V ⊗ V ′ ⊗ V ′

be the map which sends a ⊗ b to b ⊗ a. From the isomorphism, we depict
R as a centipede with two incoming factors and two outgoing factors. The
strands depict the interchanging of factors. Viewed as a braid, this centipede
diagram is a standard building block for braid diagrams:
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V ′ ⊗ V ′

V ⊗ V

R−1 is visualized similarly:

and by composing the two we obtain the identity by pulling the top strand
over the bottom. This is a Reidemeister Type II move, one of three transfor-
mations on braid diagrams which generate all well-defined transformations
on braid representations of knots.

We can extend this construction to arbitrary finite tensor products of V
and V ′:

V ⊗ V ⊗ V

V ′ ⊗ V ′ ⊗ V ′
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In the above braid diagram, the following factors are stacked from top to
bottom: R ⊗ IV , IV ⊗ R−1, R ⊗ IV , and IV ⊗ R−1, where IV denotes the
identity map on V . Hence, the above braid is a centipede diagram for the
composite

B := (IV ⊗R−1) ◦ (R⊗ IV ) ◦ (IV ⊗R−1) ◦ (R⊗ IV ).

Now, let u denote the pairing between the corresponding incoming factors
V ′ and outgoing factors V belonging to B. This produces a knot, a braid
with no loose strands, as shown below. This entire diagram represents the
composition of u⊗ u⊗ u with B.

Note that u◦B is a member of the base field K, since tensoring with u⊗u⊗u
evaluates all dual pairs (V ′, V ).

The Jones Polynomial, a knot invariant, can be defined as a centipede-
braid diagram such as B (i.e., a member of a finite tensor product with
an equal number of factors V and V ′). These polynomials are evaluated by
taking traces. To take the trace of such a finite tensor product is to compose
the braid B with the the factor u⊗ . . .⊗ u which pairs each corresponding
incoming and outgoing arrow. Theorems of knot theory show that every
knot can be unwound to be a closed braid as in the above diagram and that
braids can be generated by simple factors R and R−1. Hence, we obtain a
definition of the Jones Polynomial for arbitrary knots.
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A toolbox

1.1 Combinatorial Analysis: The Arbogast Faà di-
Bruno Formula

Theorem 1.1.1. Let I and J be non-empty intervals in R. Let f : I → R
and g : J → R be Ck-functions. Suppose f(I) ⊆ J . Then g ◦ f : I → R is
also in Ck(I) and for every x ∈ I:

(g◦f)(k)(x) = k!
∑
n≥0

 ∑
k1,...,kn≥1

1

{
n∑
i=1

ki = k

}
g(n)(f(x))f (k1)(x) · · · f (kn)(x)

n!k1! · · · kn!


Notation: Recall that given a property P :

1{P} =
{

1 if P is true;
0 if P is false.

Remark. The sum in Theorem 1.1.1 is finite (i.e., the sum terminates).
In fact note that:

1

{
n∑
i=1

ki = k

}
6= 0⇒ n ≤

n∑
i=1

k1 = k

since k1 ≥ 1 for 1 ≤ i ≤ n and ki ≤ k. This implies the sum must be finite.

How to remember it. Use the special case f(0) = 0, and f, g analytic
functions. Then:

(g ◦ f)(k)(0)
k! = coefficient of zk in f(g(z))

Proof. Proceed by induction on k. Suppose the result is true for k, i.e.,:

(g◦f)(k)(x) = k!
∑
n≥0

 ∑
α1,...,αn≥1

1

{
n∑
i=1

αi = k

}
g(n)(f(x))f (α1)(x) · · · f (αn)(x)

n!k1! · · · kn!


23
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= k!
∑
n≥0

∑
α∈Nn0

1

{
|α| = k
∀i, αi ≥ 1

}
g(n)(f(x))
n!α! f (α)(x)

Now we differentiate with respect to x:

(g ◦ f)(k+1)(x) = k!
∑
n≥0

(An +Bn,1 + · · ·+Bn,n)

where An is defined as follows:

An =
∑
α∈Nn0

1

{
|α| = k
∀i, αi ≥ 1

}
g(n+1)(f(x))

n!α! f (α)(x)f ′(x)

Set β = (α, 1), where |α| = k. Then:

An =
∑

β∈Nn+1
0

1


|β| = k + 1
∀i, βi ≥ 1
βn+1 = 1

 g(n+1)(f(x))
n!β! f (β)(x)f ′(x)

=
∑

β∈Nn+1
0

1


|β| = k + 1
∀i, βi ≥ 1
βj = 1

 g(n+1)(f(x))
n!β! f (β)(x)f ′(x)

(Note that for every j ∈ [n+ 1] there is σ ∈ Sn+1 such that σ(n+ 1) = j).

=
∑

β∈Nn+1
0

1

{
|β| = k + 1
∀i, βi ≥ 1

}
1

{
|β| = k + 1
βj = 1

}
g(n+1)(f(x))

n!β! f (β)(x)f ′(x)

Note that k + 1 = β1 · · ·+ βj + · · ·+ βn+1 and j ∈ [n+ 1], and so:

1

{
|β| = k + 1
βj = 1

}
= 1
n+ 1

n+1∑
j=1

1
{
βj = 1

}
Substituting we see that:

An =
∑

β∈Nn+1
0

1

{
|β| = k + 1
∀i, βi ≥ 1

} 1
n+ 1

n+1∑
j=1

1{βj = 1}

 g(n+1)(f(x))
n!β! f (β)(x)f ′(x)

so substituting back in the formula:

= k!
∑
n≥0

∑
α∈Nn0

1

{
|β| = k + 1
∀i, βi ≥ 1

}n+1∑
j=1

1{βj = 1}

 g(n+1)(f(x))
(n+ 1)!β! f (β)(x)

= k!
∑
n≥1

∑
α∈Nn+1

0

1

{
|α| = k + 1
∀i, αi ≥ 1

} n∑
j=1

1{αj = 1}

 g(n)(f(x))
n!α! f (α)(x) = ♥
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On the other hand:

Bn,j =
∑
α∈Nn0

1

{
|α| = k
∀i, αi ≥ 1

}
g(n)(f(x))
n!α! f (α+en,j)(x)

Set β = α+ en,j . Then:

Bn,j =
∑
α∈Nn0

1


|β| = k + 1
∀i, βi ≥ 1
βj ≥ 2

 g(n)(f(x))
n!(β − en,j)!

f (β)(x)

=
∑
α∈Nn0

1


|β| = k + 1
∀i, βi ≥ 1
βj ≥ 2

 g(n)(f(x))
n!

βj
β!f

(β)(x)

and so we see that:
n∑
j=1

Bn,j =
∑
α∈Nn0

1

{
|α| = k + 1
∀i, αi ≥ 1

}
(1{αi ≥ 2}) g

(n)(f(x))f (α)(x)
n!α! = ♣

And since (g ◦ f)(k+1)(x) = ♥+♣ we see that:

(g ◦ f)(k+1)(x) = k!
∑
n≥0

∑
α∈Nn0

1

{
|α| = k
∀i, αi ≥ 1

}
g(n)(f(x))f (α)(x)

n!α! Cn,α

where Cn,α is as follows:

Cn,α = 1{n≥1}

n∑
j=1

1{αj = 1}+
n∑
j=1

1{αj ≥ 2}αj =
n∑
j=1

1{αj = 1}αj+
n∑
j=1

1{αj ≥ 2}αj

n∑
j=1

αj(1{αj = 1}+ 1{αj ≥ 2}) =
n∑
j=1

αj1{αj ≥ 1} =
n∑
j=1

αj = |α| = k + 1

We now take a look at the Leibniz Product Rule in Rd.

Proposition 1.1.2. Let f : U → K, g → K be Ck functions. Then on U ,
for all α ∈ Nd

0 with |α| ≤ k, we have

∂α(fg) =
∑

β,γ∈Nd0

1{β + γ = α} α!
β! γ! (∂

βf)(∂γg)

Proof. We prove this using induction on |α|.
• |α| = 1: Suppose w.l.g. that α1 = 1, αi = 0 ∀ i = 2, 3, ..., d. β + γ = α

splits up into two sums with β1 = 1, βi = 0, γj = 0 and βj = 0, γ1 = 1, γi =
0 ∀ j = 1, 2, ..., d, i = 2, 3, ..., d.
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So, RHS is ∂f
∂x1

g + f ∂g
∂x1

which is just the product rule in one-variable
(keeping all the other variables fixed). Hence, base case of induction is true.

Now suppose that the result holds for all |α| ≤ k
• |α| = k + 1: We can write α = α′ + λ with |α′| = k, |λ| = 1. Thus, by

definition, ∂α(fg) = ∂λ(∂α′(fg)).

∂λ(∂α′(fg)) = ∂λ
( ∑
β′,γ′∈Nd0

1{β′ + γ′ = α′} α′!
β′! γ′! (∂

β′f)(∂γ′g)
)
(by induction hypothesis)

=
∑

β′,γ′∈Nd0

1{β′ + γ′ = α′} α′!
β′! γ′!

[
(∂β′+λf)(∂γ′g) + (∂β′f)(∂γ′+λg)

]
(using base case)

=
∑

β′,γ′∈Nd0

1{β′ + γ′ = α′} α′!
β′! γ′! (∂

β′+λf)(∂γ′g)

+
∑

β′,γ′∈Nd0

1{β′ + γ′ = α′} α′!
β′! γ′! (∂

β′f)(∂γ′+λg)

=
∑

β,γ∈Nd0

1{β + γ = α} (α− λ)!
(β − λ)! γ! (∂

βf)(∂γg)

+
∑

β,γ∈Nd0

1{β + γ = α} (α− λ)!
β! (γ − λ)! (∂

βf)(∂γg)

(using β = β
′ + λ, γ = γ

′ in the first sum; β = β
′
, γ = γ

′ + λ in the second sum; α = α
′ + λ)

=
∑

β,γ∈Nd0

1{β + γ = α}
[ (α− λ)!
(β − λ)! γ! + (α− λ)!

β! (γ − λ)!
]
(∂βf)(∂γg)

=
∑

β,γ∈Nd0

1{β + γ = α} α!
β! γ! (∂

βf)(∂γg)

using the fact that (α− λ)!
(β − λ)! γ! + (α− λ)!

β! (γ − λ)! = α!
β! γ! for |γ| = 1.

1.2 Bump Functions & Smooth Tensor-like Parti-
tions of Unity

The key tool for this section will be the following function:

h(x) =
{
e−

1
x , x > 0

0, x ≤ 0
−4 −2 0 2 4 6 8 10
0

0.1
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1

Proposition 1.2.1. h is C∞.
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Proof. On (0,∞), h(x) = g(f(x)) where g(x) = ex, f(x) = − 1
x . Observe

that the derivatives look like g(n)(x) = ex, f (n)(x) = (−1)n−1n!x−(n+1). So,
using the Faà di Bruno formula, we have

h(k)(x) = k!
∑
n≥0

∑
α∈Nn0

1

{
|α| = k, αi ≥ 1 ∀ i

} e− 1
x

n!α!

n∏
i=1

[
(−1)αi−1αi!x−αi−1

]
= e−

1
xk! (−1)kx−k

∑
n≥0

∑
α∈Nn0 )

1

{
|α| = k, αi ≥ 1 ∀ i

} 1
n! (−1)nx−n

Now impose k ≥ 1.

h(k)(x) = e−
1
xk! (−1)k

xk

k∑
n=1

1
n!
(
− 1
x

)n ∑
α∈Nn0

1

{
|α| = k, αi ≥ 1 ∀ i

}
.

Note that if βi = αi−1, then as the middle quantity is precisely counting

all possible ways of getting
n∑
i=1

βi = k−n with the condition βi ≥ 0 for each

i.
So, we get

h(k)(x) = e−
1
xk! (−1)k

xk

k∑
n=1

1
n!
(
− 1
x

)n(k − 1
n− 1

)

= e−
1
x

1
x2kPk(x)

where Pk(x) = k!(−1)k
k∑

n=1

(−1)n

n!

(
k − 1
n− 1

)
xk−n is a polynomial of degree

k − 1.
Observe that for all n ∈ Z, lim

x→0+
e−

1
xxn = 0. This shows that for all

k, lim
x→0+

h(k)(x) = 0, which in turn implies that h is C∞.

Definition 1.2.2. Let I be an open interval in R and σ ≥ 1. A function
f : I → K is called σ-Gevrey if for all compact sets C ⊂ I, there exist
AC , BC > 0 such that ∣∣∣f (k)(x)

∣∣∣ ≤ ACBk
C(k!)σ

for all x ∈ C and k ≥ 0.

Remark 1.2.3. σ = 1 if and only if f is analytic. Indeed, if f is σ-Gevrey
with σ = 1, then the Taylor series for f centered at any x ∈ I has a positive
radius of convergence, and hence we can find a domain (open, connected
set) U ⊂ C with U ∩R = I and a holomorphic function g : U → C such that
f = g|I .
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Remark 1.2.4. Since an analytic function has discrete zero set, our h is
clearly not analytic.

Theorem 1.2.5. For all k ≥ 0 and x ∈ R we have |h(k)(x)| ≤ 8k(k!)2. Thus
h is σ-Gevrey with σ = 2.

Proof. Let k ≥ 1, x > 0. Following the above discussion, we have

|h(k)(x)| ≤ e−
1
xk!

k∑
n=1

1
n!

1
xn+k

(k − 1)!
(n− 1)! (k − n)!

≤ k!
k∑

n=1

(n+ k)! (k − 1)!
n! (n− 1)! (k − n)! using 1

xn+k ≤ (n+ k)!e
1
x

= k!
k∑

n=1

(n+ k)! k! (k − 1)!
n! k! (n− 1)! (k − n)!

= (k!)2
k∑

n=1

(
n+ 1
k

)
(k − 1)!

(n− 1)! (k − n)!

≤ (k!)2
k∑

n=1
2n+k2k−1 using

(
m

i

)
≤ 2m

= (k!)222k−1
k∑

n=1
2n

≤ 8k(k!)2

Remark 1.2.6.
dk

dxk

(
e−

1
x

)
= k!

2πi

∮
γ

e−
1
z

(z − x)k+1dz

where γ is a the boundary of some disk centred at 0.

Proof. Note that f(z) = e−
1
z is a holomorphic function on C \ {0}. So, by

the Cauchy integral formula applied to the holomorphic function f (k)(z) on
the same domain, we have for any x > 0,

f (k)(x) = dk

dxk

(
e−

1
x

)
= k!

2πi

∮
γ

e−
1
z

(z − x)k+1dz

.
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In the previous lecture we proved that the function

h(x) =
{
e−1/x, x > 0

0, x ≤ 0
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is infinitely differentiable (i.e. smooth) everywhere. Now consider

ϕ0(x) = h(x+ 1)h(1− x)
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By the construction of ϕ0 we see that

• ϕ0 ∈ C∞

• ϕ0 ≥ 0

• ϕ0 is even

• supp(ϕ0) ⊂ [−1, 1]

• ϕ0 6= 0 when x ∈ (−1, 1)

Our goal in this section is to construct a grid-like partition of unity on
Rd based on such ϕ0. First, let

ϕ1(x) =
(∫

R
ϕ0(t)dt

)−1
ϕ0(x)
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Then, besides the above 5 properties ϕ1 also satisfies

•
∫

R
ϕ1(x)dx = 1

In order to construct a “buffer function” between constants 0 and 1, we
let

ϕ2(x) =
∫ x

−∞
ϕ1(t)dt
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From those properties of ϕ1 we know
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• ϕ2 ∈ C∞

• ϕ2 = 0 when x ≤ −1

• ϕ2 = 1 when x ≥ 1

• 0 < ϕ2 < 1 when −1 < x < 1

• ϕ2 is strictly increasing on (−1, 1)

• ϕ2 is symmetric at (0, 1/2)

Now we squish ϕ2 horizontally by 1/4, translate it to the left by 3/4 and
multiply the reflection by y-aixs:

ϕ3(x) = ϕ2(4x+ 3)ϕ2(3− 4x)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

From the properties of ϕ2 we know

• ϕ3 ∈ C∞

• ϕ3 is even

• ϕ3 = 0 if x ∈ (−∞,−1] ∪ [1,∞)

• ϕ3 = 1 if x ∈ [−1
2 ,

1
2 ]

• 0 < ϕ3 < 1 if x ∈ (−1,−1
2) ∪ (1

2 , 1)

• ϕ3 is strictly increasing on (−1,−1
2) and strictly decreasing on (1

2 , 1)

• ϕ3
∣∣
(−1,− 1

2 ) is symmetric at (−3
4 ,

1
2) and ϕ3

∣∣
( 1

2 ,1) is symmetric at (3
4 ,

1
2)

To make a “bump function” on Rd (the picture below is a bump function
on R2) we can take

Φ(x) = ϕ3(|x|)

which “inherits” most of the features of ϕ3:
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• Φ ∈ C∞

• Φ is radially symmetric

• Φ = 0 if x ∈ Rd \B(0, 1)

• Φ = 1 if x ∈ B(0, 1
2)

• 0 < Φ < 1 if x ∈ B(0, 1) \B(0, 1
2)

For the first property: one can write out explicitly all higher order partial
derivatives of Φ except at x = 0, but obviously Φ is also smooth at x = 0
since it is a constant on a neighborhood.

Definition 1.2.7. For any subset Ω ⊂ Rd we define

D(Ω,K) := {f ∈ C∞(Ω) | supp(f) ⊂ Ω}.

where the closure is taken in Rd.

Proposition 1.2.8. If Ω ⊂ Rd has non-empty interior then D(Ω,K) 6= {0}.

Proof. The interior being non-empty means there is a ball Br(x0) ⊂ Ω.
Then from the above construction we know Φ(|x− x0|/r) ∈ D(Ω,K).

Definition 1.2.9 (Tensor-like bump function). To make a “cube-supported”
bump function we let

Ψ(x) =
ϕ3(x1)ϕ3(x2) . . . ϕ3(xd)

Similar to what Φ does, this gives a transition map from a large cube
{x | |xi| ≤ 1} to a smaller cube {x | |xi| ≤ 1

2}.

To construct a partition of unity on Rd, we define a copy of tensor-like
bump function on each “integer tile” so that they add up to 1. First let
us consider this in one dimension: we want a sequence {ψn}n∈Z such that∑
n∈Z ψn(x) = 1. Let

φ(x) = ϕ2(4x+ 2)ϕ2(2− 4x)

which satisfies
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• φ ∈ C∞

• φ is even

• φ = 0 if x ∈ (−∞,−3
4 ] ∪ [3

4 ,∞)

• φ = 1 if x ∈ [−1
4 ,

1
4 ]

• 0 < φ < 1 if x ∈ (−3
4 ,−

1
4) ∪ (1

4 ,
3
4)

• φ
∣∣
(− 3

4 ,−
1
4 ) is symmetric at (−1

2 ,
1
2) and φ

∣∣
( 1

4 ,
3
4 ) is symmetric at (1

2 ,
1
2)

It is clear that
∑
n∈Z φ(x−n) = 1 when x ∈ [−1

4 +n, 1
4 +n]. The symmetry

properties (the second one and the last one) also garuantee that on the
transition areas two adjacent φ(x− n)’s add up to 1. Therefore

∑
n∈Z φ(x− n) = 1 for all

x ∈ R
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Proposition 1.2.10. Define index N = (n1, n2, . . . , nd) ∈ Zd and let

ψ(x) = φ(x1)φ(x2) . . . φ(xd)

Then
∑
N∈Zd ψ(x−N) = 1 for all x ∈ Rd.

Proof. By Tonelli’s theorem (in discrete measure), for each fixed x

∑
N∈Zd

ψ(x−N) =
∑
N∈Zd

φ(x1 − n1)φ(x2 − n2) . . . φ(xd − nd)

=

∑
n1∈Z

φ(x1 − n1)

∑
n2∈Z

φ(x2 − n2)

 . . .
∑
nd∈Z

φ(xd − nd)


≡1 · 1 . . . 1 = 1
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1.3 The Local/Nonlinear Change of Variable For-
mula

Recall from Real Analysis I that an affine map is a map on Rd of the form

x 7→ c+ Tx

where T : Rd → Rd is a linear invertible map and c ∈ Rd. Recall also the
Global/Affine Change of Variable Formula

Theorem 1.3.1 (Global/Affine Change of Variable Formula). If f : Rd →
[0,∞] is Borel measurable or f : Rd → K is Borel measurable and Lebesgue
integrable, then ∫

Rd
f(c+ Tx) |detT | ddx =

∫
Rd
f(x)ddx.

Recall that a domain is a nonempty open connected subset of Rd.

Corollary 1.3.2. Let U ⊆ Rd be a domain. If f : U → [0,∞] is Borel
measurable or f : U → K is Borel measurable and Lebesgue integrable, then∫

U
f(c+ Tx) |detT | ddx =

∫
U
f(x)ddx.

Proof Sketch. Extend f by zero:

f̃(x) =
{
f, x ∈ U
0, x /∈ U

Then apply Theorem 1.3.1 to f̃ .
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1.3.1 Local Change of Variables, Version 1.0

Definition 1.3.3. Let U, V ⊆ Rd be open and nonempty, and let f : U → V .
We call f Frechét differentiable on U if for all x ∈ U there exists an
L : Rd → Rd linear such that for y 6= x,

lim
y→x
|f(y)− f(x)− L(y − x)|

|y − x|
= 0.

L called the Frechét derivative, and denote it by Dxf . We say f is C1 if
the function U ⊆ Rd → Hom(Rd,Rd) given by x 7→ Dxf is continuous, and
we say that f is a diffeomorphism if f is bijective and f−1 : V → U is
also C1.

Notation. Let x ∈ Rd.

• The determinant of the matrix of Dxf in the canonical basis,

Jxf = det
(
∂fi
∂xj

)
1≤i,j≤d

,

is called the Jacobian determinant of f at x.

• | · | will denote the Euclidean norm.

• If A : Rd → Rd is linear, then we denote the operator norm on A by

‖A‖ = sup
x∈Rd\{0}

|Ax|
|x|

.

• For r > 0, the open ball of radius r centered at x is denoted B(x, r).

• The closed ball of radius r centered at x is denoted B(x, r).

Theorem 1.3.4 (Local Change of Variables, Version 1.0). Let U, V ⊆ Rd

be open and nonempty. Let f : U → V be a C1 diffeomorphism and g ∈
D(V,K). Then ∫

U
g(f(x)) |Jxf | ddx =

∫
V
g(z) ddz.

The proof we choose will be complicated, but we choose it in order to

• learn some important techniques, and

• use grid (tensor)-like partitions of unity developed in the last section.

Idea/Intuition of Proof
In calculus, nice maps locally look like affine maps.
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So, we will

1. decompose the integral into local pieces (because the map f 7→
∫
f is

linear),

2. use the affine change of variables on the pieces, and

3. collect.

Prep Work

f

U V

KU KV

δU

δV

g
R

Let KV := supp(g), and KU := f−1(KV ) = supp(g ◦ f). Note that both
KU and KV are compact. Define δU to be the distance between KU and U c
and δV to be the distance between KV and V c. Note that both are positive
values. Indeed, because U c is closed and KU is compact,

δU = d(KU , U
c)

= inf
x∈KU

d(x, U c)

= inf
x∈KU

inf
y∈Uc

|x− y|

= min
x∈KU

inf
y∈Uc

|x− y|.

Similarly δV > 0.
Remark: If g = 0, result follows almost immediately so assume g is

nonzero. Hence, KU and KV are nonempty. In addition, if U = R2, then
distance between KU and U c is infinite so take δU = 1

Let
K̃U := {x+ y ∈ Kd : (x, y) ∈ KU ×B(0, δU/2)}

and
K̃V := {x+ y ∈ Kd : (x, y) ∈ KV ×B(0, δV /2)}

be thickenings for KU and KV , respectively.
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KU

δU

U x

δU/2

K̃U

Note that K̃U is also compact because it is the continuous image of the
compact set KU ×B(0, δU/2), and similarly K̃V is compact.
Remark 1.3.5. Note that

vol(K̃U ) :=
∫
K̃U

1ddx <∞,

and similarly, K̃V has finite volume.
Recall our partition of unity from Section 1.2: Let ψ : Rd → R be a

partition of unity, i.e. it satisfies the following:

• For all x ∈ Rd,
∑
y∈Zd ψ(x− y) = 1.

• ψ is C∞

• ψ ≡ 1 on [−1/4, 1/4]d

• supp(ψ) ⊆ [−3/4, 3/4]d ⊂ B̄(0, 3
√
d/4)

Let N ≥ 1 be an integer, and define ψN := ψ(Nx). Then for all x ∈ Rd,∑
y∈( 1

N
Z)d

ψn(x− y) = 1.

This “shrinks” the grid from before.

× 1
N

Note that supp(ψN ) ⊂ B̄(0, 3
√
d/4N).

KU

U

K̃U
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Define
LN := {y ∈

( 1
N

Z
)d

: B(y,
√
d/N) ∩KU 6= ∅}.

This will collect the points in the small grid that are within
√
d/N of

KU .
In order to prove Theorem 1.3.4, we need the following five lemmas.

Lemma 1.3.6. There exists an N1 ∈ N0 such that for all N ≥ N1,

|LN | ≤ Nd ×Vol(K̃U ).

Proof. Note that LN is at most countably infinite since it is counting points
on the grid.

∑
y∈LN

1 =
∑
y∈LN

∫
Rd
ψ(x)ddx

=
∑
y∈LN

∫
Rd
ψ(N(z − y))ddz Change of variables, x = N(z − y)

=
∑
y∈LN

∫
Rd
ψN (z − y)ddz

= Nd
∫

Rd

 ∑
y∈LN

ψN (z − y)

 ddz Tonelli

The integrand is nonzero and since supp(ψN ) ⊂ B̄(0, 3
√
d/4N), there

exists y ∈ LN such that |z − y| ≤ 3
√
d/4N . Then by construction of LN ,

there is some w ∈ KU such that |y−w| ≤
√
d/N . By application of triangle

inequality, we get

|z − w| ≤ 7
√
d

4N ≤ δU
2

where the last inequality is true provided

N ≥ N1 :=
⌈

7
√
d

2δU

⌉
.

It follows that z ∈ K̃U and therefore∑
y∈LN

1 ≤ Nd
∫

Rd
1× 1{z ∈ K̃U}ddz

where the integral is the volume of K̃U . This completes the proof.

The next lemma essentially proves g is uniformly Lipshitz on space V .
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Lemma 1.3.7. There exists a constant c1 > 0 such that for any z1, z2 ∈ V ,
|g(z1)− g(z2)| ≤ c1|z1 − z2|.

Proof. Define g̃ : R→ K to be the extension of g by 0 outside V , i.e.,

g̃(z) :=
{
g(z) z ∈ V
0 otherwise

.

Since g ∈ D(V,K) and V is compact, it follows that g̃ is C∞ on Rd. For any
z1, z2 ∈ Rd, we can write g̃(z1) in the form of interpolation between z1 and
z2.

g̃(z1) = g̃(z2 + t(z1 − z2))
∣∣∣
t=1

= g̃(z2) +
∫ 1

0

d

dt

(
g̃(z2 + t(z1 − z2))

)
dt FTC

= g̃(z2) +
∫ 1

0

(
Dz2+t(z1−z2)g̃

)
(z1 − z2) dt M.V. Chain Rule

It follows that

|g̃(z1)− g̃(z2)| ≤ sup
0≤t≤1

∣∣∣Dz2+t(z1−z2)g̃
)
(z1 − z2)

∣∣∣
≤ |z1 − z2| sup

0≤t≤1

∥∥∥Dz2+t(z1−z2)g̃
∥∥∥

≤ |z1 − z2| sup
z∈R
‖Dz g̃‖

Set c1 := supz∈KV ‖Dz g̃‖ + 1. Note that c1 < ∞ because its bounded for
z ∈ V (since compact) and 0 on its complement. This gives us the desired
inequality and completes the proof.

Note that the extension was done because V is not necessarily convex
so we could interpolate between two points in V which takes us outside the
set. The following lemma is similar in flavor.

Lemma 1.3.8. There exists a constant c2 > 0 such that for any x1, x2 ∈ Rd,
|Ψ(x1)−Ψ(x2)| ≤ c2|x2 − x1|.

Proof. Same.

The next lemma is a uniform version of Frechet differentiation.

Lemma 1.3.9. For any ε > 0, there exists η > 0 such that for any x, y ∈ K̃U

where |x− y| ≤ η, we have |f(x)− f(y)−Dyf(x− y)| ≤ ε|x− y|.
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Proof. For any α > 0, define

Dα := {(x, y) ∈ K̃U
2 : |x− y| ≤ α} ⊂ (Rd)2

to be the set of pairs of points in K̃U within a distance of α of each other.
Because it is a product of compact sets, Dα is also compact. Consider the
map

Dα × [0, 1] −→ Rd

sending
(x, y, t) 7−→ y + t(x− y) ∈ [x, y].

Denote K̃U,α as the image of this map. Observe this set is also compact and
it contains K̃U for if x ∈ K̃U , then (x, x) ∈ Dα and so (x, x, 0) 7→ x ∈ K̃U,α.

Claim: for small enough α > 0, K̃U,α ⊂ U . It is enough to set α < δU/2
to get this result (see image below).

Fix α = δU/4 and ε > 0. Consider the map{ ˜̃KU −→ L(Rd,Rd)
z 7−→ Dzf

(recall f : U 7→ V is a C1 diffeomorphism.) Since ˜wideK̃U is compact, this
map is uniformly continuous so there exists η > 0 such that for all x, y ∈ ˜̃KU

where |x− y| ≤ η,
‖Dxf −Dyf‖ < ε.

Note that there is no harm in taking η ≤ δU/4.
Fix x, y ∈ K̃U such that |x − y| ≤ η. Note that |x − y| ≤ η ≤ α

implies [x, y] ∈ ˜̃KU ⊂ U and so we can interpolate between x and y. By
Fundamental Theorem of Calculus and chain rule, we have

f(x) = f(y) +
∫ 1

0

(
Dy+t(x−y)f

)
(x− y) dt.

Therefore

f(x)− f(y)−Dyf(x− y) =
∫ 1

0

[
Dy+t(x−y)f(x− y)−Dyf(x− y)

]
dt

whose norm is bounded by

|x− y| sup
t∈[0,1]

∥∥∥Dy+t(x−y)f −Dyf
∥∥∥ ≤ |x− y|ε

which completes the proof.

We have an analogous lemma and proof over the space K̃V . Here how-
ever, we’ll use the inverse of f on V (since f is a diffeomorphism).
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Lemma 1.3.10. For any ε > 0, there exists η > 0 such that for any z, w ∈
K̃V where |z−w| ≤ η, we have |f−1(z)−f−1(w)−Dw(f−1)(z−w)| ≤ ε|z−w|.

Proof. Same.

We are now ready to prove Theorem 1.3.4.

Proof of Theorem 1.3.4. Set N ≥ N1 where N1 is taken from Lemma 1.3.6.
Apply the partition of unity on ΨN to left side of desired equation.∫

U
g(f(x)) |Jxf | ddx =

∫
U

1 · g(f(x)) |Jxf | ddx

=
∫
U

 ∑
y∈( 1

N
Z)d

ΨN (x− y)

 g(f(x)) |Jxf | ddx

Notice that if ΨN (x− y) 6= 0, then it follows

x− y ∈ 1
N

[
−3

4 ,
3
4

]d
⊂ B

(
0, 3
√
d

4N

)
⊂ B

(
0,
√
d

N

)
and if we assume g(f(x)) 6= 0, then it follows x ∈ KU . Futhermore, since
|x − y| <

√
d/N , then y ∈ LN by definition. Therefore, we can replace the

sum with one over LN , i.e.,∫
U
g(f(x))| |Jxf | ddx =

∫
U

 ∑
y∈LN

ΨN (x− y)

 g(f(x)) |Jxf | ddx.

Since this is a finite sum, we can interchange the integral and sum.∫
U
g(f(x))|Jxf |ddx =

∑
y∈LN

∫
U

ΨN (x− y)g(f(x)) |Jxf | ddx

Approximation. Since x and y are "close" to each other, we want to
approximate |Jxf | by |Jyf |. If we can do that, then we pick up an error
term E1 and so∫

U
g(f(x)) |Jxf | ddx = E1 +

∑
y∈LN

∫
U

ΨN (x− y)g(f(x)) |Jyf | ddx.

We just need to verify that |Jyf | is well defined (potential issue is that y
could be outside KU and so we need to check y isn’t outside U .) Since
y ∈ LN , the distance between y and KU is bounded by

√
d/N . Assume now

that N ≥ N2 :=
⌈
4
√
d/δU

⌉
. Because 4

√
d/N ≤ δU/2, it follows that

B

(
y,

√
d

N

)
⊂ K̃U ⊂ U

and so y ∈ U . Therefore |Jyf | is well defined.
end of lecture 10
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We left off where the LHS was equal to
∫
U g(f(x))|Jxf |ddx and noted

that |Jx(f)| ≈ |Jy(f)|. With that approximation in mind, we define an error
term E1 such that the LHS is

E1 +
∑
y∈LN

∫
U
ψN (x− y)g(f(x))|Jyf |ddx

where we consider N such that
N ≥ N2 := d∗e 4

√
d

δv
⇒ ∀y ∈ LN , y ∈ B

(
y,
√
d
N

)
⊂ K̃U ⊂ U

to address well-definedness. Now we claim that the LHS is in fact

E1 +
∑
y∈LN

∫
B(y,

√
d
N

)
ψN (x− y)g(f(x))|Jyf |ddx

which follows from the fact that x ∈ U \ B(y,
√
d
N ) ⇒ ψN (x − y) = 0.

Now we attempt to approximate the LHS again by noting that f(x) ≈
f(y) + Dyf(x − y). Recall first that suppψN ⊂ B

(
0, 3
√
d

4N

)
⊂ B

(
0,
√
d
N

)
, so

our approximation suggests we define a new error term E2 such that the
LHS is

E1 + E2 +
∫
B(y,

√
d
N

)
ψN (x− y)g(f(y) +Dyf(x− y))|Jyf |ddx,

so of course we must ensure that
∫
B(y,

√
d
N

) ψN (x−y)g(f(y)+Dyf(x−y))|Jyf |ddx
is well-defined in order to proceed. We need that f(y) + Dyf(x − y) ∈ V .
We will show a stronger statement: for N sufficiently large, for all y ∈ LN ,
we have f(y) +DyfB

(
0,
√
d
N

)
⊂ K̃V ⊂ V .

We start by applying lemma 4, in particular let ε1 = 1, so the lemma implies
there exists ν1 > 0 such that for all v, w ∈ K̃U , we have |v − w| ≤ ν1 ⇒
|f(v)−f(w)−Dw(v−w)| ≤ 1∗|v−w|. Now let y ∈ LN , so there exists u ∈ KU

such that |u − y| <
√
d
N . Furthermore, we let x ∈ B

(
y,
√
d
N

)
⇒ v, y ∈ K̃U .

Note that u ∈ KU ⇒ u ∈ K̃U and y ∈ K̃U from the previous assumption
that N ≥ Nε. Note that if N ≥ N3 := d∗e

√
d
ν1

, then |u− y| <
√
d/N ≤ ν1 ⇒

|f(u)−f(y)−Dyf(u−y)| ≤ |u−y| but |Dyf(x−u)| ≤ ||Dyf ||∗|x−u|. There-
fore |f(u)−f(y)−Dyf(x−y)| ≤ |f(u)−f(y)−Dyf(u−y)−Dyf(x−u)| ≤
|u − y| + c3|x − u| where c3 := sup

v∈K̃V
||DUf || < ∞ (by compactness).

Note that |u − y| <
√
d/N and |x − u| is at most 2

√
d/N . Therefore,

d(f(y) +Dyf(x− y),Kv) ≤ (1+2c3)
√
d

N ≤ δv/2.

We now impose the restriction that N ≥ N4 := d∗e 2
√
d(1+2c3)
δv

, so f(y) +
Dyf(x−y) ∈ K̃V . Therefore, we proved the claim that for N large, then for



42 1. A TOOLBOX

all y ∈ LN , f(y) + DyfB
(
0,
√
d
N

)
⊂ K̃V ⊂ V . We go back to our previous

concern: the LHS is equal to

E1 + E2 +
∫
B(y,

√
d
N

)
ψN (x− y)g(f(y) +Dyf(x− y))|Jyf |ddx.

Now apply the affine change of variables formula for a new variable z :=
f(y) +Dyf(x− y) where y is fixed. The LHS then becomes

E1 + E2 +
∑
y∈LN

∫
f(y)+DyfB

(
0,
√
d
N

) ψN ((Dyf)−1(z − f(y)))g(z)ddx.

Now we use the approximation (Dyf)−1(z − f(y)) ≈ f−1(z)− y to consider
a new error term E3 defined by the claim that the LHS is

E1 + E2 + E3 +
∑
y∈LN

∫
f(y)+DyfB

(
0,
√
d
N

) ψN (f−1(z)− y)g(z)ddx.

This expression defines E3 so long as the integral above is well-defined.
Note that f(y) +DyfB

(
0,
√
d
N

)
⊂ K̃V ⊂ V ; our next step is that we want to

change f(y) +DyfB
(
0,
√
d
N

)
into V . To do so, we need ψN (f−1(z)− y) = 0

on the complement. Note that ψN (f−1(z)− y) 6= 0→ f−1− y ∈
[
−3
4N ,

3
4N

]d
.

Therefore z ∈ f(y +
[
−3
4N ,

3
4N

]d
) ⊂ f(B̄(y, 3

√
d/N)) ⊂ f(B(y,

√
d/N)) ⊂ U .

We now need to verify that f(B̄(y, 3
√
d/N)) ⊂ f(y) + Dyf(B(0,

√
d/N)).

Note that |x−y| ≤
√
d/4N ⇒ |(Dyf)−1(f(x)−f(y))| <

√
d/N . Notice that

(Dyf)−1(f(x)−f(y)) = (Dyf)−1(f(x)−f(y)−Dyf(x−y))+(Dyf)−1Dyf(x−y)

⇒ |(Dyf)−1(f(x)−f(y))| ≤ ||Df(y)(f−1)||∗|f(x)−f(y)−Dyf(x−y)|+|x−y|

where ||Df(y)(f−1)|| ≤ c4 := sup
v∈K̃V

||Dvf
−1|| <∞ as K̃V is compact. Not

that g 6= 0 ⇒ Kv ⊂ K̃V 6= ∅, c4 > 0, and f is C1 differentiable. Now, we
use lemma 4 with ε2 = 1

4c4
⇒ ∃ν2 > 0 such that

|f(x)− f(y)−Dyf(x− y)| < 1
4c4
|x− y|

provided that y ∈ K̃U , x ∈ K̃U , |x− y| ≤ ν2. However, we note that y ∈ LN
and x ∈ B̄

(
y, 3
√
d

4N

)
⊂ B

(
y,
√
d
N

)
⊂ K̃U as N ≥ N2. Furthermore, we now

enforce the requirement that

N ≥ N5 := d∗e 3
√
d

4ν2
⇒ |x− y| ≤ 3

√
d

4N ≤ ν2
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⇒ |(Dyf)−1(f(x)−f(y))| ≤ (c4∗
1
c4

+1)|x−y| ≤ 5
4 |x−y| ≤

5 ∗ 3
4 ∗ 4

√
d

N
<

√
d

N
.

We’ve now proven the claim that for N sufficiently large,

f(B̄
(
y,

3
√
d

4N
)
⊂ f(y) +DyfB

(
0,
√
d

N

)
,

so that the LHS is indeed

E1 + E2 + E3 +
∑
y∈LN

∫
V
ψN (f−1(z)− y)g(z)ddx.

We wish to prove that

LHS :=
∫
U
g(f(x)) |Jxf | ddx =

∫
V
g(z) ddz := RHS.

We have already shown that N ≥ N1, , , N5 implies

LHS = E +
∑
y∈LN

∫
V
ψN (f−1(z)− y)g(z) ddz

where E = E1 +E2 +E3, the sum of three error terms that are the result
of three approximations:

(E1) : |Jxf | ≈ |Jyf |

(E2) : g
(
f(x)

)
≈ g

(
f(y) +Dyf(x− y)

)
(E3) : ψN

(
(Dyf)−1(z − f(y))

)
≈ ψN

(
f−1(z)− y

)
.

LN is finite, so

LHS = E +
∫
V

 ∑
y∈LN

ψN (f−1(z)− y)

 g(z) ddz.

Suppose that g(z) 6= 0 and ψN (f−1(z)− y) 6= 0.

• g(z) 6= 0 =⇒ z ∈ KV := Supp(g)
=⇒ f−1(z) ∈ KU := f−1(KV ) = Supp(g ◦ f).

• ψN (f−1(z)− y) 6= 0 =⇒
∣∣∣f−1(z)− y

∣∣∣ ≤ 3
√
d

4N ≤
√
d
N .

The above two facts combine to get

f−1(z) ∈ KU ∩B
(
y,
√
d
N

)
6= ∅

=⇒ y ∈ LN (by the definition of LN ).
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This allows us to conclude

LHS = E +
∫
V

 ∑
y∈LN

ψN (f−1(z)− y)

 g(z) ddz

= E +
∫
V

 ∑
y∈( 1

N Z)d

ψN (f−1(z)− y)

 g(z) ddz

= E +
∫
V

(1)g(z) ddz

= RHS.

Yayy!!!
Now that we have proved LHS = RHS, let’s get some bounds on the

error E = E1 + E2 + E3 by bounding each error term. Fix ε > 0.

E1 error estimate:

By definition,

E1 :=
∑
y∈LN

∫
U
ψN (x− y)g(f(x))

(
|Jxf | − |Jyf |

)
ddx.

We know that f is C1-differentiable and |Jxf | is a polynomial in the
1st partial derivatives of f . Therefore, |Jxf | is uniformly continuous on
K̃U ⊂ U .

∃η3 > 0,∀x, y ∈ K̃U ,

(
|x− y| ≤ η3 =⇒

∣∣∣∣ |Jxf | − |Jyf | ∣∣∣∣ < ε

)
.

This gives us the bound

|E1| ≤
∑
y∈LN

∫
U
ψN (x− y) |g(f(x))|

∣∣∣∣ |Jxf | − |Jyf | ∣∣∣∣ ddx.
We already know that

• y ∈ LN =⇒ y ∈ K̃U ,

• g(f(x)) 6= 0 =⇒ x ∈ KU ⊂ K̃U ,

• and ψN (x− y) 6= 0 =⇒ |x− y| ≤ 3
√
d

4N ≤ η3 under the condition that
N ≥ N6 :=

⌈
3
√
d

4η3

⌉
.
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This gives

|E1| ≤
∑
y∈LN

∫
U
ψN (x− y) |g(f(x))|

∣∣∣∣ |Jxf | − |Jyf | ∣∣∣∣ ddx
≤
∑
y∈LN

∫
U
ψN (x− y) |g(f(x))| ε ddx

≤
∑
y∈LN

∫
U
ψN (x− y) ‖ · ‖L∞g1{x ∈ KU} ε ddx

≤ ε ‖ · ‖L∞g
∑
y∈LN

∫
U
ψN (x− y)1{x ∈ KU} ddx

≤ ε ‖ · ‖L∞g
∑
y∈LN

∫
KU

ψN (x− y) ddx

≤ ε ‖ · ‖L∞g
∫
KU

∑
y∈LN

ψN (x− y) ddx

≤ ε ‖ · ‖L∞g
∫
KU

1 ddx

≤ ε ‖ · ‖L∞gVol(KU ) .

E2 error estimate:

By definition,

E2 :=
∑
y∈LN

∫
B

(
y,

√
d
N

) ψN (x− y)
(
g(f(x))− g(f(y)−Dyf(x− y))

)
|Jyf | ddx

|E2| ≤
∑
y∈LN

∫
B

(
y,

√
d
N

) ψN (x− y)
∣∣∣∣g(f(x))− g(f(y)−Dyf(x− y))

∣∣∣∣ |Jyf | ddx
We know that y ∈ LN ⊂ K̃U when N ≥ N2, so we have the bound

|Jyf | ≤ c5 := sup
u∈K̃U

|Juf | <∞.

|E2| ≤ c5
∑
y∈LN

∫
B

(
y,

√
d
N

) ψN (x− y)
∣∣∣∣g(f(x))− g(f(y)−Dyf(x− y))

∣∣∣∣ ddx
Also, by Lemma 2 (or Lemma 1.3.7), we have |g(f(x))− g(f(y)−Dyf(x− y))| ≤

c1 |f(x)− f(y)−Dyf(x− y)|. Lemma 4 states that ∃η4 > 0 such that
∀u, v ∈ K̃U , we have (|u− v| ≤ η4 =⇒ |f(x)− f(y)−Dyf(x− y)| ≤ ε|u− v|).

Therefore, since y ∈ K̃U , choosing N ≥ N4 :=
⌈√

d
η4

⌉
, and because x ∈

B
(
y,
√
d
N

)
, we have |x− y| <

√
d
N ≤ η4 and thus |f(x)− f(y)−Dyf(x− y)| ≤
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ε|x− y| ≤ ε
√
d
N . Putting this result back in our error bound, we compute

|E2| ≤ εc1c5
√
d
N

∑
y∈LN

∫
B

(
y,

√
d
N

) ψN (x− y) ddx

≤ εc1c5
√
d
N

∫
B

(
y,

√
d
N

) ∑
y∈LN

ψN (x− y) ddx

≤ εc1c5
√
d
N

∫
B

(
y,

√
d
N

) 1 ddx

≤ εc1c5
√
d
N Vol

(
B
(
y,
√
d
N

))
≤ εc1c5

√
d
N Vol

(
K̃U

)
.

E3 error estimate:

By definition,

E3 :=
∑
y∈LN

∫
f(y)+DyfB

(
0,
√
d
N

) [ψN ((Dyf)−1(z − f(y)
)
− ψN (f−1(z)− y)

]
g(z) ddz.

We use Lemma 3, the definition ψN (·) := ψ(N ·), and the fact that ψ is
Lipshitz (with constant c2) to get

E3 :=
∑
y∈LN

∫
f(y)+DyfB

(
0,
√
d
N

) [ψN ((Dyf)−1(z − f(y)
)
− ψN (f−1(z)− y)

]
g(z) ddz

|E3| ≤ ‖ · ‖L∞g
∑
y∈LN

∫
f(y)+DyfB

(
0,
√
d
N

) ∣∣∣ψN ((Dyf)−1(z − f(y)
)
− ψN (f−1(z)− y)

∣∣∣ ddz
|E3| ≤ c2N ‖ · ‖L∞g

∑
y∈LN

∫
f(y)+DyfB

(
0,
√
d
N

) ∣∣∣(Dyf)−1(z − f(y)− (f−1(z)− y)
∣∣∣ ddz

We already showed forN ≥ N1, , , N4, ∀y ∈ LN , we have f(y)+DyfB
(
0,
√
d
N

)
⊂

K̃V ⊂ V .
For such y ∈ LN , denote w := f(y). Let z ∈ f(y) +DyfB

(
0,
√
d
N

)
. Then

∣∣∣(Dyf)−1(z − f(y)− (f−1(z)− y)
∣∣∣

=
∣∣∣(Dyf)−1(z − f(y))− f−1(z) + y

∣∣∣
=
∣∣∣(Dyf)−1(z − w)− f−1(z) + f−1(w)

∣∣∣
=
∣∣∣Dw(f−1)(z − w)− f−1(z) + f−1(w)

∣∣∣



1.3. THE LOCAL/NONLINEAR CHANGE OF VARIABLE FORMULA47

because (Dyf)−1 and Dw(f−1) represent the same linear map, but go-
ing in opposite directions (this is a more general version of the formula
[f−1(w)]′ = 1

f ′(y) where w = f(y)).
Recall that Lemma 5 states ∃η5 > 0 such that ∀u, v ∈ K̃V , we have(

|u− v| ≤ η5 =⇒
∣∣f−1(u)− f−1(v)−Du(f−1)(u− v)

∣∣ ≤ ε|u− v|).
In our case, z, w ∈ K̃V .
z − w ∈ DyfB

(
0,
√
d
N

)
=⇒ |z − w| ≤ ‖ · ‖Dyf

√
d
N ≤ c3

√
d
N ≤ η5 when N ≥ N8 :=

⌈
c3
√
d

η5

⌉
. Now

|E3| ≤ ‖ · ‖L∞gc2N
∑
y∈LN

∫
f(y)+DyfB

(
0,
√
d
N

) εc3
√
d
N ddz

≤ εc2c3
√
d ‖ · ‖L∞g

∑
y∈LN

∫
f(y)+DyfB

(
0,
√
d
N

) ddz

We perform an affine change of variables replacing z with x using the
equation z = f(y) +Dyf(x), getting

|E3| ≤ εc2c3
√
d ‖ · ‖L∞g

∑
y∈LN

∫
B

(
0,
√
d
N

) |Jyf | ddx.
Again since y ∈ K̃U , we use the bound c5 to get

|E3| ≤ εc2c3c5
√
d ‖ · ‖L∞g

∑
y∈LN

∫
B

(
0,
√
d
N

) 1 ddx

≤ εc2c3c5
√
d ‖ · ‖L∞g |LN |

∫
B

(
0,
√
d
N

) 1 ddx

Yet another affine change of variables, this time using the substitution
x =

√
d
N u, gives

|E3| ≤ εc2c3c5
√
d ‖ · ‖L∞g |LN |

∫
B(0,1)

(√
d
N

)d
ddu

≤ εc2c3c5
√
d
d+1
‖ · ‖L∞g |LN |

(
1
N

)d ∫
B(0,1)

1 ddu

≤ εc2c3c5
√
d
d+1
‖ · ‖L∞g |LN |

(
1
N

)d
Vol(B(0, 1))

Finally, requiring N ≥ N1, Lemma 1 guarantees

|E3| ≤ εc2c3c5
√
d
d+1
‖ · ‖L∞gVol

(
K̃U

)
Vol(B(0, 1)) .

By taking ε→ 0 and N →∞, we see that all of the error terms vanish,
completing the proof of the Theorem. �
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Remark 1.3.11. We note a few points about the technique of the above proof.

• Compactness was used heavily; it provided us with uniform estimates
(constant bounds) and uniform continuity.

(• It is important to keep track of dependencies, e.g., many of our esti-
mates depended on N .

• In proofs like that of Theorem 1.3.4, it is common to employ “big O”
(O) or “little o (o) notations, or even the notation f . g to mean
f ≤ cg for some constant c > 0. One should exercise extreme caution
when employing such notations because it is quite easy to make a
mistake which is then particularly difficult for the reader to self-correct.

Theorem 1.3.12 (Smooth Urysohn Lemma). Let ∅ 6= K ⊂ U ⊂ Rd with
K compact and U open. Then there exists a smooth function ρ : Rd → R
such that ρ|K ≡ 1 and supp(ρ) ⊂ U .

Proof. For δ > 0, define
K̃δ :=

⋃
x∈K

B(x, δ)

By choosing δ < min{d(K,U c), 1}, we can ensure that K̃δ ⊂ U . As before,
for N ∈ N, define

LN :=
{
y ∈ 1

N
Zd
∣∣∣ ∃ x ∈ K such that |x− y| <

√
d

N

}
We claim that for N sufficiently large,

ρ(x) :=
∑
y∈LN

ψN (x− y) =
∑
y∈LN

ψ(N(x− y))

is such a function. If N ≥ N0 := d7
√
d

4δ e, then supp(ρ) ⊂ K̃δ ⊂ U . Indeed,
let y ∈ Ln, and suppose that ψN (x − y) 6= 0 for some x ∈ Rd, so that
|x− y| ≥ 3

√
d

4N . Choose x0 ∈ K such that |y − x0| <
√
d/N . Then

|x− x0| ≤ |x− y|+ |y − x0| <
7
√
d

4N ≤ δ =⇒ x ∈ K̃δ ⊂ U

It remains to show that ρ(x) = 1 for any x ∈ K. Because

1 =
∑

y∈ 1
N

Zd

ψN (x− y),

it suffices to show that ψN (x − y) = 0 for any y ∈ 1
NZd \ LN . Indeed, for

any such y,

|x− y| ≥
√
d

N
>

3
√
d

4N =⇒ ψN (x− y) = 0



1.3. THE LOCAL/NONLINEAR CHANGE OF VARIABLE FORMULA49

Theorem 1.3.13 (Smooth Functions Approximate Continuous Functions).
Let K1 and K2 be compact sets contained in an open set U ⊆ Rd with ∅ 6=
K1 ⊂ K̊2. Let f : U → K be a continuous function with supp(f) ⊂ K1. Then
there exists a sequence of functions fN ∈ D(U,K) such that supp(fN ) ⊆ K2
for all N and

lim
N→∞

‖f − fN‖∞ = 0

Proof. Let f̃ = f ·1{x ∈ U} be the extension of f by 0. Then f̃ is uniformly
continuous on Rd. Indeed, f̃ |K2 = f |K2 is uniformly continuous, so given
ε > 0 there exists δ > 0 such that

(i) |f̃(x)− f̃(y)| < ε for all x, y ∈ K2 with |x− y| < δ; and

(ii) |x− y| < δ implies that x, y /∈ K1 or x, y ∈ K2 (take δ < d(K1, K̊
c
2)).

Recall that there exists a C∞ function ψ : Rd → R with the following
properties:

• ψ has compact support.

• ψ(Rd) ⊆ [0, 1] and ψ(0) > 0.

•
∫

Rd ψ(x) ddx = 1.

That is to say, ψ is a mollifier. Define ρN (x) := Ndψ(Nx) for N ∈ N.
Note that ∫

Rd
ρN (x) ddx =

∫
Rd
ψ(x) ddx = 1,

so ρN (x)→ δd(x) as N →∞. Now define

fN (x) := (ρN ∗ f̃)(x) =
∫

Rd
ρN (x− y)f̃(y) ddy

fN can be thought of as the “local average” of f̃ with respect to the weight
ρN near x. Note that ‖f̃‖∞ · 1{y ∈ K1} dominates (in the sense of the
Dominated Convergence Theorem and its corollaries) the above integrand.
More generally,

‖f̃‖∞1{y ∈ K1} sup
z∈Rd
|∂αρN (z)|

dominates ∂α

∂x

(
ρN (x− y)f̃(y)

)
for all α ∈ Nk

0 and k ∈ N0. Thus we can
write

∂αfN (x) =
∫

Rd
∂αρN (x− y)f̃(y) ddy,

the point here being that each fN is C∞. Choose δ > 0 small enough
that B(x, δ) ⊂ K̊2 for all x ∈ K1. Then choose N0 ∈ N large such that
supp(ρN ) ⊂ B(0, δ). Then for all N ≥ N0, we have supp(fN ) ⊆ K2. To
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show uniform convergence, choose δN > 0 such that supp(ρN ) ⊂ B(0, δN ).
For all x ∈ U and N ≥ N0, we have

|f(x)− fN (x)| =
∣∣∣∣∫

Rd
ρN (x− y)f(x) ddy −

∫
Rd
ρN (x− y)f̃(y) ddy

∣∣∣∣
=
∣∣∣∣∣
∫
B(x,δN )

ρN (x− y)(f̃(x)− f̃(y)) ddy
∣∣∣∣∣

≤ sup
z∈B(x,δN )

|f̃(x)− f̃(z)|

The latter term tends to 0 uniformly by the uniform continuity of f̃ .

Proposition 1.3.14. Let U be a nonempty open subset of Rd. There exists
a continuous function ϕ : U → [0,∞) such that ϕ−1([0, R]) is compact for
all R > 0.

Proof. If U = Rd, let ϕ(x) = |x|. Otherwise, let

ϕ(x) = max
{
|x|, 1

d(x, U c)

}

Proposition 1.3.15. Let U be a nonempty open subset of Rd. Then there
exists a sequence (KN )N≥1 of compact subsets of U such that K1 6= ∅,
KN ⊆ KN+1 for all N ≥ 1, and U =

⋃∞
N=1KN .

Proof. Fix a point x0 ∈ U , let ϕ : U → [0,∞) be as in Proposition 1.3.14,
and let KN := ϕ−1([0, ϕ(x0)+N ]). Note that x0 ∈ K1 = ϕ−1([0, ϕ(x0)+1]),
so K1 6= ∅.

Theorem 1.3.16 (Change of Variable Formula, Version 2.0). Let f : U → V
be a C1 diffeomorphism between open subsets U, V of Rd.

1. A function g : V → [0,∞] is (BV ,B[0,∞])-measurable if and only if
the map

U → [0,∞], x 7→ g(f(x)) |Jxf |

is (BU ,B[0,∞])-measurable. In this case, we have∫
U
g(f(x)) |Jxf | ddx =

∫
V
g(z) ddz
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2. Let g : V → K be (BV ,BK)-measurable. Then g is Lebesgue-integrable
if and only if the map

U → [0,∞], x 7→ g(f(x)) |Jxf |

is Lebesgue-integrable. In this case, we have∫
U
g(f(x)) |Jxf | ddx =

∫
V
g(z) ddz

Proof. We first make a series of reductions.

• Regarding the second statement, the case K = C follows from the case
K = R by setting g = <g + i=g. The case K = R follows from the
first statement by setting g = g+ − g−, where g+ = max{0, g} and
g− = min{0,−g}. Thus we reduce to proving the first statement.

• The statement about measurablity is clear: if h(x) = g(f(x))|Jxf |,
then, because f is a diffeomorphism, f and f−1 are in particular mea-
surable, so

g measurable =⇒ g(f(x)) |Jxf | measurable
=⇒ g(f(f−1(y))) |Jf−1(y)f | |Jyf−1| = g(y) measurable

• The change of variables formula for general g follows from the case in
which g is a simple function by applying the Monotone Convergence
Theorem. By linearity of the integral, we thus reduce to the case in
which g = 1{z ∈ A} for some A ∈ BV .

• We can reduce further to the case in which A ⊆ K̊ for some compact
subset K of V . Indeed, take an exhausting sequence (KN )N≥1 for
V as in Proposition 1.3.15. Then 1{z ∈ A ∩ KN} is a sequence of
measurable functions which converges to 1{a ∈ A} from below, so the
Monotone Convergence Theorem applies.

Now, suppose that A ∈ BV , K ⊂ V is compact, and ∅ 6= A ⊆ K̊. For
any B ∈ BRd , let

µ(B) :=
∫
U

1{f(x) ∈ B ∩ K̊} |Jxf | ddx

Then µ is a finite Borel measure on Rd. Indeed, if B =
⋃∞
j=1Bj (disjoint
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union) with Bj ∈ BRd , then B ∩ K̊ =
⋃∞
j=1Bj ∩ K̊ (disjoint union), and

µ(B) =
∫
U

 ∞∑
j=1

1{f(x) ∈ Bj ∩ K̊}

 |Jxf | ddx
=
∞∑
j=1

∫
U

1{f(x) ∈ Bj ∩ K̊} |Jxf | ddx (MCT)

=
∞∑
j=1

µ(Bj)

Moreover,

µ(Rd) =
∫
U

1{f(x) ∈ K̊} |Jxf | ddx

≤ Vol(f−1(K)) sup
x∈f−1(K)

|Jxf |

<∞

Any such measure is both inner and outer regular (see Homework 8, MATH
7310, Spring 2017). Combining this with the inner and outer regularity of
the Lebesgue measure, we have that for any given ε > 0, there exists a
compact set C ⊆ A and an open set W with A ⊆W ⊆ K̊ such that

µ(A)− ε ≤ µ(C) ≤ µ(A) ≤ µ(W ) ≤ µ(A) + ε

and
Vol(A)− ε ≤ Vol(C) ≤ Vol(A) ≤ Vol(W ) ≤ Vol(A) + ε

By applicaiton of the smooth Urysohn lemma, we can choose a C∞ function
ρ : Rd → R with 0 ≤ ρ ≤ 1, ρ|C ≡ 1, and supp(ρ) ⊂ W . We now apply the
change of variable formula version 1.0 to ρ:∫

U
ρ(f(x)) |Jxf | ddx =

∫
V
ρ(z) ddz

This gives us

µ(A) ≤ ε+ µ(C)

= ε+
∫
V

1{f(x) ∈ C} |Jxf | ddx

≤ ε+
∫
U
ρ(f(x)) |Jxf | ddx

= ε+
∫
V
ρ(z) ddz

≤ ε+ Vol(W )
≤ 2ε+ Vol(A)
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Likewise,

µ(A) ≥ −ε+ µ(W )

= −ε+
∫
U

1{f(x) ∈W} |Jxf | ddx

≥ −ε+
∫
V
ρ(f(x)) |Jxf | ddx

= −ε+
∫
V
ρ(z) ddz

≥ −ε+ Vol(C)
≥ Vol(A)− 2ε

Taking ε→ 0, we see that µ(A) = Vol(A), i.e.,∫
U
g(f(x)) |Jxf | ddx =

∫
V
g(z) ddz

where g(z) = 1{z ∈ A}.

1.4 Spherical Coordinates

In this section, we present a generalization of the familiar polar coordinate
formulas x = r cos θ, y = r sin θ to higher dimensions.

Let d ≥ 2, and set U := (0,∞) × (0, π)d−2 × (0, 2π) ⊂ Rd. We define
f : U → R by f(r, θ1, . . . , θd) := (x1, . . . , xd), where each xi is defined as
follows:

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3,

...
xd−1 = r sin θ1 sin θ2 · · · sin θd−2 cos θd−1,

xd = r sin θ1 · · · sin θd−1.

For 2 ≤ i ≤ d−1, we obtain xi from xi−1 by changing the last cosine in xi−1
to a sine and appending a new cosine. For i = d, no new cosine is appended.

We set V := f(U) to be the range of this coordinate chart. In this section,
we build towards the result that f is a C∞-diffeomorphism onto V , which
is almost all of Rd.
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Example 1.4.1. When d = 2, we have the standard polar coordinate for-
mulas x1 = r cos θ1 and x2 = r sin θ2. The restriction r ∈ (0,∞) and
θ1 ∈ (0, 2π) removes the positive x-axis from V .

Example 1.4.2. When d = 3, we have x1 = r cos θ1, x2 = r sin θ1 cos θ2, and
x3 = r sin θ1 sin θ2. These are the familiar spherical coordinates, possibly
with different angle convention than other branches of the natural sciences.
Here, θ1 is the angle from (1, 0, 0) to the projection of x = (x1, x2, x3) onto
the x1x3 plane. And θ2 is the angle from (0, 1, 0) to the projection of x onto
the x2x3 plane.

Proposition 1.4.3. For 1 ≤ i ≤ d− 1, we have

d∑
j=i

x2
j = r2 ·

i−1∏
j=1

sin2 θj .

Proof. We use descending induction on i. If i = d − 1, the proposition’s
statement is that x2

d−1 + x2
d = r2∏d−2

j=1 sin2 θj . This is the case, since by
definition of xd−1 and xd, and some simple factoring, we have,

x2
d−1 + x2

d =

(r
d−2∏
j=1

sin θj) · cos θd−1

2

+

(r
d−2∏
j=1

sin θj) · sin θd−1

2

=

r d−2∏
j=1

sin θj

 · (cos2 θd−1 + sin2 θd−1
)

= r2
d−2∏
j=1

sin2 θj .

Now suppose that the statement holds for some i between 2 and d− 1. We
claim that the statement holds for i − 1, which will prove the proposition.
By assumption, we have:

d∑
j=i−1

x2
j = x2

i−1 + r2
i−1∏
j=1

sin2 θj .

By definition of xi−1 and factoring, we obtain

d∑
j=i−1

x2
j = r2 ·

i−2∏
j=1

sin2 θj

 · cos2 θi−1 + r2

i−1∏
j=1

sin2 θj



= r2 ·

i−2∏
j=1

sin2 θj

 · (cos2 θi−1 + sin2 θi−1) = r2 ·

i−2∏
j=1

sin2 θj

 .
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In particular, we have x2
1 + . . . + x2

d = r2, since our proof of Proposition
1.4.3 is consistent with the convention that the empty product is equal to 1.

Proposition 1.4.4. The image V = f(U) is all of Rd except for a half-
hyperplane (which has measure zero). We have

V = {(x1, . . . , xd) ∈ Rd : xd 6= 0 or (xd = 0 and xd−1 < 0)}.

Proof. To show V is contained in the right-hand set, we first observe that by
1.4.3, we have xd−1 = ρ cos θd−1 and xd = ρ sin θd−1, where ρ =

√
x2
d−1 + x2

d =
r sin θ1 · · · sin θd−2. By definition, θi ∈ (0, π) for 1 ≤ i ≤ d− 2. Hence ρ > 0
since sin is positive on (0, π). If xd = 0, then θd−1 = π, and therefore
xd−1 = ρ cos θd−1 = −ρ < 0.

To show the opposite inclusion, let x = (x1, . . . , xd) be a member of
the right-hand set. We explicitly construct a preimage of x under f by
descending induction on i. By assumption, we have ρ =

√
x2
d−1 + x2

d >

0. Hence, for the case i = d − 1, there exists θd−1 ∈ (0, π) such that
xd−1 = ρ cos θd−1 and xd = ρ sin θd−1. Now suppose that for we have chosen
θd−1, . . . , θi for 2 ≤ i ≤ d− 1 such that cos θd−2 = xd−2√

x2
i+...+x

2
d

and sin θd−2 >

0. Then, by our observation that x2
d−1 +x2

d > 0, we have that xi−1√
x2
i−1+...+x2

d

∈

(−1, 1). So there exists θi−1 ∈ (0, π) such that cos θi−1 = xi−1√
x2
i−1+...+x2

d

and

sin θi > 0.

Let r :=
√
x2

1 + . . .+ x2
d. We claim that the tuple τ := (r, θ1, . . . , θd−1)

maps to x under f . By construction, τ ∈ U . Let y = (y1, . . . , yd) := f(τ).

By ascending induction on i with 1 ≤ i ≤ d, we show that (a) x2
i + . . .+

x2
d = r2 sin2 θ1 · · · sin2 θi−1 and that (b) xi = yi.

For i = 1, we have
∑d
i=1 x

2
i = r2 by definition. And by construction, we

have
y1 = r cos θ1 =

√
x2

1 + . . .+ x2
d ·

x1√
x2

1 + . . .+ x2
d

= x1.

If the statement holds for 1 ≤ i ≤ d−2, then it holds for i+1. To see this,
we apply the inductive assumption, in particular, our formula for xi = yi.
We have:

x2
i+1 + . . .+ x2

d = (x2
i + . . .+ xd)2 − x2

i

= r2 sin2 θ1 · · · sin2 θi−1 − r2 sin2 θ1 · · · sin2 θi−1 cos2 θi

= r2 sin2 θ1 · · · sin2 θi−1(1− cos2 θi) = r2 sin2 θ1 · · · sin2 θi−1 sin θi.
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Hence (a) holds. And by the inductive assumption and by construction, we
have

yi+1 = (r sin θ1 · · · sin θi) ·cos θi+1 =
√
x2
i + . . .+ x2

d ·
xi+1√

x2
i + . . .+ x2

d

= xi+1.

Hence (b) holds.

Finally, suppose the claim holds for i with 1 ≤ i ≤ d − 1. The same
argument for (a) in the previous paragraph applies here to show that (a)
holds for the case i = d. And by definition of θd−1, we have xd = ρ sin θd−1 =
r sin θ1 · · · sin θd−1 = yd. Hence (b) holds.

Proposition 1.4.5. f : U → V is injective.

Proof. Let x = (x1, . . . , xd) ∈ V and y = (r, θ1, . . . , θd−1) ∈ U . We show that
y is uniquely determined by x. By Proposition 1, r2 = x2

1+. . .+x2
d > 0. Since

r ∈ (0,∞), then r =
√
x2

1 + . . .+ x2
d. Define x0 := 0. Then by Proposition

2, for i with 1 ≤ i ≤ d− 2, we have

cos θi = xi√
x2
i + . . .+ x2

d

.

Since x2
d−1 + x2

d > 0 by assumption, the right-hand expression makes sense
and is contained in (−1, 1). Hence, there is a unique θi in (0, π) which makes
the above hold, namely, θi = arccos

(
xi√

x2
i+...+x

2
d

)
. Hence, y is unique such

that f(y) = x.

We are ready to prove that f : U → V is a C∞-diffeomorphism. This
follows by finding an expression for f−1 which is evidently infinitely differ-
entiable. This can also be shown by explicitly computing the Jacobian of f
and showing it is non-zero everywhere. Since we will need to compute the
Jacobian anyways for change of variables in integrals, we end up with two
proofs of this following theorem.

Theorem 1.4.6. f : U → V is a C∞-diffeomorphism.

Proof. Let x = (x1, . . . , xd) ∈ V . By the previous proposition, we have

r =
√
xd1 + . . .+ x2

d.

For 1 ≤ i ≤ d− 2, we have

θi = arccos

 xi√
x2
i + . . .+ x2

d

 .
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We observe that
√
· is C∞ on (0,∞), that arccos is C∞ on (−1, 1), that

x 7→ xd1 + . . . + x2
d is a C∞ function mapping into V into (0,∞), and that

x 7→ xi√
x2
i+...+x

2
d

is a C∞ function mapping V into (−1, 1). Hence, to show

f−1 is C∞ is only remains to show that θd−1 is a C∞ function of x. We have
cos(θd−1) = xd−1√

x2
d−1+x2

d

and sin(θd−1) = xd√
x2
d−1+x2

d

. Hence eiθd−1 = xd−1+ixd√
x2
d−1+x2

d

and so θd−1 = 1
i log

(
xd−1+ixd√
x2
d−1+x2

d

)
. We choose log to be the branch cut

of the logarithm with the non-negative real axis removed. Since log(·) is
holomorphic on this domain and xd−1+ixd√

x2
d−1+x2

d

is never contained in the non-

negative real axis by assumption, we conclude that θd−1 is also a C∞ function
of x.

Proposition 1.4.7. Let Aε = {x ∈ Rd | |x| ∈ [1, 1 + ε]}. Then

Vold−1($d−1) = lim
ε→0+

1
ε
Vold(Aε).

Proof.

lim
ε→0+

1
ε
V old(Aε) = lim

ε→0+

∫
Rd
ddx 1{x ∈ Aε}1{1 ≤ x ≤ 1 + ε}

= lim
ε→0+

[V old−1($d−1)×
∫ 1+ε

1
rd−1dr] (change of variable, Fubini)

= V old−1($d−1)× lim
ε→0+

∫ 1+ε

1
rd−1dr

= V old−1($d−1) (Fundamental Theorem of Calculus)

Theorem 1.4.8. ∀ d ≥ 2, V old−1($d−1) = 2π
d
2

Γ(d2)
.

Proof. Applying change of variable and Fubini, we have∫
Rd
e−x.xddx = V old−1($d−1)×

∫ ∞
0

e−r
2
rd−1dr

=⇒
( ∫

R
e−t

2
dt
)d

= V old−1($d−1)×
∫ ∞

0

dt

2
√
t
e−tt

d−1
2

=⇒ (
√
π)d = V old−1($d−1)× 1

2Γ(d2)

=⇒ V old−1($d−1) = 2π
d
2

Γ(d2)
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Remark 1.4.9. If d = 1 in the formula, we have V ol0($0) = 2 which is
consistent with the notion of measure (here the cardinality) of the two point
set.

Theorem 1.4.10. Let d ≥ 1.
(i)

∫
{0<|x|≤1}

1
|x|α

ddx <∞ ⇐⇒ α < d.

(ii)
∫
|x|>1

1
|x|α

<∞ ⇐⇒ α > d.

Proof.

(i)
∫
{0<|x|≤1}

1
|x|α

ddx = V old−1($d−1)
∫ 1

0
rd−1−αdr <∞ ⇐⇒ α < d

.

(ii)
∫
{|x|>1}

1
|x|α

ddx = V old−1($d−1)
∫ ∞

1
rd−1−αdr <∞ ⇐⇒ α > d

Remark 1.4.11. Recall the solution to the poisson equation:
∫

R3\{x}

ρ(y)
|x− y|α

d3y—

this converges because α = 1 < 3.
More generally, ρ ∈ S(Rd)— the latter will be discussed later and we

shall have a new function φ(x) =
∫

Rd\{x}

ρ(y)
|x− y|α

ddy.
• Integrals where convergence happens for α < d are called fractional integrals.
• Integrals where convergence happens for α = d are called singular integrals which
play an important role in harmonic analysis.
• Integrals where convergence haapens for α > d are called hypersingular integrals.

Notation: We will use ≈ to denote that the ratio of L.H.S. and R.H.S.
is bounded away from 0 and ∞.

Theorem 1.4.12. Let d ≥ 1.
1. α > d,

∫
{R≤|x|≤1}

1
|x|α

ddx ≈ 1
Rα−d

when R→ 0+.

2. α < d,

∫
{1≤|x|≤R}

1
|x|α

ddx ≈ Rd−α, R→∞.

3.
∫
{R≤|x|≤1}

1
|x|d

ddx ≈ log
( 1
R

)
, R→ 0+.

4.
∫
{1≤|x|≤R}

1
|x|d

ddx ≈ log(R), R→∞.

Proof. All of the above follow from change of variable to spherical coordi-
nates and following the same method as we did in the earlier proofs.
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Topological Vector Spaces

2.1 Abstract Metrics
Definition 2.1.1. Let (V,+, ·) be a K-vector space with topology T (K
is equipped with some topology T′ also; particularly if K is an Euclidean
space then we would just take T′ to be the standard topology induced by
the Euclidean norm). It is called a topological vector space (TVS) if the
two maps defined by

V × V → V K× V → V

(x, y) 7→ x+ y (λ, v) 7→ λv

are continuous with respect to T. Here the products V × V and K× V are
equipped with product topology.

Definition 2.1.2. Let (V,+, ·) be a K-vector space (K is either real or com-
plex). We call ρ : V → [0,∞) a seminorm if

• ρ(λx) = |λ|ρ(x);

• ρ(x+ y) ≤ ρ(x) + ρ(y).

Additionally, if

• ρ(x) = 0 ⇒ x = 0,

then we call ρ a norm.

Notations: Generally if we use (X, d) to denote a metric space and τ(d) to
denote the topology induced by metric d. And we use Nall(V ) to denote the
set of all seminorms on V .

59
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Definition 2.1.3. Let (V,+, ·) be a K-vector space. For a subset N ⊂
Nall(V ) and an element ρ ∈ Nall(V ), we say ρ is continuous relative to N if
there exist c > 0 and a finite subset {T1, . . . , Tn} ⊂N such that

ρ(x) ≤ c(T1(x) + . . .+ Tn(x)) for all x ∈ V.

Remark 2.1.4. Every ρ ∈ N is continuous relative to N. This is because
ρ(x) ≤ 1(ρ(x)) for all x ∈ V .

Definition 2.1.5. Let (V,+, ·) be a K-vector space and let F = {ρ1, . . . , ρn} ⊂
Nall(V ). A multi-ball B(x, F, ε) is defined to be

B(x, F, ε) := {y ∈ V | ρ1(y − x) < ε, . . . , ρn(y − x) < ε} .

Definition 2.1.6. Let (V,+, ·) be a K-vector space. For a subset N ⊂
Nall(V ), the topology induced by N is denoted τ(N) and defined by

{U ⊂ V | ∀x ∈ U,∃ε > 0 & finite set F ⊂N s.t. B(x, F, ε) ⊂ U} .

Proposition 2.1.7. The τ(N) defined above is indeed a topology. Moreover,
if ρ is continuous relative to N, then B(x, {ρ}, ε) ∈ τ(N) for any x and ε.

Proof. τ(N) is a topology: It is trivial that ∅ ∈ τ(N) and τ(N) is closed
under arbitrary union. If U1, U2 ∈ τ(N) and U1 ∩ U2 6= ∅ (otherwise U1 ∩
U2 = ∅ ∈ τ(N)), for any x ∈ U1 ∩ U2 there exist ε1, ε2, F1, F2 such that
B(x, F1, ε1) ⊂ U1 and B(x, F2, ε2) ⊂ U2, then

B(x, F1 ∪ F2,min{ε1, ε2}) ⊂ B(x, F1, ε1) ∩B(x, F2, ε2) ⊂ U1 ∩ U2.

By definition U1 ∩ U2 ∈ τ(N).
B(x, {ρ}, ε) ∈ τ(N): For any y ∈ B(x, {ρ}, ε), let ε′ = (ε − ρ(y − x))/2.

Then for any z ∈ B(y, {ρ}, ε′)

ρ(z − x) ≤ ρ(z − y) + ρ(y − x) ≤ ε′ + ρ(y − x) < ε

so B(y, {ρ}, ε′) ⊂ B(x, {ρ}, ε). Since ρ is continuous relative to N there are
c and F = {ρ1, . . . , ρn} ⊂ N such that ρ ≤ c(ρ1 + . . . + ρn). If we take
ε′′ = ε′

(n+1)c , then ρk(z− y) < ε′′ for all 1 ≤ k ≤ n implies ρ(z− y) < ε′, thus

B(y, F, ε′′) ⊂ B(y, {ρ}, ε′) ⊂ B(x, {ρ}, ε).
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Remark 2.1.8. Since for every ρ continuous wrt N, B(x, {ρ}, ε) ∈ τ(N), it
follows that τ(Ncrt) = τ(N), whereNcrt is the set of all seminorms continuous
wrt N. Therefore, it is more convenient to use Ncrt as the defining set of
seminorms for V as opposed to using N.

Proposition 2.1.9 (Single Seminorm Openness Criterion). Let U ⊂ V .
Then U ∈ τ(N) if and only if for any x ∈ U there exists ε > 0 and seminorm
ρ continuous relative to N such that B(x, {ρ}, ε) ⊂ U .

Proof. (=⇒): If x ∈ U , there exists ε and F = {ρ1, . . . , ρn} ⊂ N such that
B(x, F, ε) ⊂ U . Let ρ = ρ1 + . . .+ρn which is continuous relative to N, then

B(x, {ρ}, ε) ⊂ B(x, F, ε) ⊂ U

(⇐=): Now suppose for any x ∈ U , B(x, {ρ}, ε) ⊂ U with some ε > 0
and seminorm ρ continuous relative to N. By Proposition 2.1.7 we know
every such B(x, {ρ}, ε) ∈ τ(N) therefore

U =
⋃
x∈U

B(x, {ρ}, ε) ∈ τ(N).

Note that ρ depends on x.

Proposition 2.1.10. Let (V,+, ·) be a K-vector space and N ⊂ Nall(V ).
Then (V, τ(N)) is a topological vector space. Such a TVS is called a locally convex TVS
(LCTVS).

Proof. We’ve shown (V, τ(N)) is a topology in Proposition 2.1.7.
“+” is a continuous map: We’ll show preimage of open set is open. Given

U ∈ τ(N) and x + y ∈ U (x, y ∈ V ), there exist ε and F = {ρ1, . . . , ρn} ⊂
N such that B(x + y, F, ε) ⊂ U . Because ρk’s are seminorms, triangular
inequality guarantees that

B(x, F, ε/2) +B(y, F, ε/2) ⊂ B(x+ y, F, ε) ⊂ U.

Thus B(x, F, ε/2)×B(y, F, ε/2) is an open neighbourhood of (x, y) contained
in the preimage of U .

“·” is a continuous map: Given U ∈ τ(N) and λx ∈ U (λ ∈ K, x ∈ V ),
by Proposition 2.1.9 there exist ε and ρ continuous relative to N such that
B(λx, {ρ}, ε) ⊂ U . Now for any (µ, y) ∈ B(λ, ε′) × B(x, {ρ}, ε′) with small
enough ε′ we have

ρ(µy − λx) = ρ(µy − µx+ µx− λx)
≤ |µ|ρ(y − x) + |µ− λ|ρ(x)
≤ (|λ|+ ε′)ε′ + ε′ρ(x) < ε

so B(λ, ε′) × B(x, {ρ}, ε′), which is an open neighbourhood of (λ, x) (by
Proposition 2.1.7), is contained in the preimage of U .
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Proposition 2.1.11. Let (V,+, ·) be a K-vector space, ρ ∈Nall(V ) and N⊂
Nall(V ). Then ρ is continuous relative to N if and only if ρ : (V, τ(N)) →
[0,∞) is continuous.

Proof.

(=⇒): Only need to observe that ρ−1([0, r)) = B(0, {ρ}, r) ∈ τ(N) by Propo-
sition 2.1.7.

(⇐=): In particular, ρ is continuous at 0 ∈ V . So there exist ε0 and F =
{ρ1, . . . , ρn} ⊂ N such that ρ(B(0, F, ε0)) ⊂ [0, 1]. Fix an x ∈ V . If
ρk(x) 6= 0 for some k, let λ = 2(ρ1(x) + . . . + ρn(x))/ε0. Then for all
1 ≤ k ≤ n

ρk(λ−1x) = λ−1ρk(x) ≤ ε0/2 < ε0

so λ−1x ∈ B(0, F, ε0). Then ρ(λ−1x) ≤ 1 and

ρ(x) = λρ(λ−1x) ≤ λ = 2
ε0

(ρ1(x) + . . .+ ρn(x)).

If ρk(x) = 0 for all k, then µ−1x ∈ B(0, F, ε0) for any µ > 0 thus
ρ(µ−1x) ≤ 1 and

ρ(x) = µρ(µ−1x) ≤ µ

for any µ > 0, so ρ(x) = 0 and it is trivial that

ρ(x) ≤ 2
ε0

(ρ1(x) + . . .+ ρn(x)).

Since x is arbitrary and ε0 only depends on ρ, by letting c = 2/ε0 we
prove ρ is continuous relative to N.

Proposition 2.1.12. Let (V,+, ·) be a K-vector space and N1,N2 ⊂Nall(V ).
Then τ(N1) ⊂ τ(N2) if and only if every ρ ∈N1 is continuous relative to N2.

Proof.

(=⇒): Suppose ρ ∈N1. Then ρ is continuous relative to N1. Then by Propo-
sition 2.1.11, ρ is continuous with respect to τ(N1). τ(N1) is contained
in τ(N2), so ρ is also continuous with respect to τ(N2). By Proposi-
tion 2.1.11 again, ρ is continuous relative to N2.

(⇐=): If ρ ∈ N1 then ρ is continuous relative to N2 and by Proposition 2.1.7
we know B(x, {ρ}, ε) ∈ τ(N2) for all x and ε. But τ(N1) is generated
by {B(x, {ρ}, ε) | ρ ∈N1}, so τ(N1) ⊂ τ(N2).
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Corollary 2.1.13. Let (V,+, ·) be a K-vector space and N1,N2 ⊂ Nall(V ).
Then τ(N1) = τ(N2) if and only if every ρ ∈N1 is continuous relative to N2
and vice versa.

Definition 2.1.14. Let (V, τ) be a LCTVS.We callN⊂Nall(V ) a defining collection
of seminorms for (V, τ) if τ(N) = τ .

Proposition 2.1.15. (V, τ(N)) is Hausdorff if and only if N is a separating
collection of seminorms, i.e. for any x ∈ V \ {0} there is ρ ∈ N such that
ρ(x) > 0.

Proof. See the lecture notes in Math 7310, proposition 3.8.

Proposition 2.1.16. Let (V, τ(N)) be a Hausdorff LCTVS. Then the fol-
lowings are equivalent:

1. V is metrizable.

2. V is first countable.

3. There exists a countable Nc ⊂N such that τ(N) = τ(Nc).

Proof. See the lecture notes in Math 7310.

Definition 2.1.17. A LCTVS (V, τ) is called a Fréchet space if and only if
there exists a sequence of continuous seminorms {ρn}n≥1 such that

d(x, y) :=
∑
n≥1

2−n min{1, ρn(x− y)}

is a distance which induces the topology τ and (V, d) is a complete metric
space.

Remark 2.1.18. The {ρn}n≥1 above is automatically defining and separating.
Any single or finite collection of seminorms is included by the sequences
{ρn}n≥1 with repeating elements.
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Definition 2.1.19. A LCTVS (V, τ) is called a Banach space if and only if
there exists a norm ‖ · ‖ that induces its topology (that is, τ(‖ · ‖) = τ) and
V is a complete metric space under the induced metric d from ‖ · ‖.

Remark 2.1.20. Every Banach space is a Fréchet space because the norm
‖ · ‖ from the Banach space creates the distance d needed in the Fréchet
space. On the other hand, a distance d does not necessarily induce a norm,
and hence a Fréchet space is not necessarily a Banach space.

Theorem 2.1.21. Let V1, . . . , Vn,W be LCTVS’s and let h : V1×. . .×Vn →
W be a K-multilinear map. Then h is continuous if and only if for any
continuous seminorm ρ on W there exist continuous seminorms T1, . . . , Tn
on V1, . . . , Vn respectively, such that

ρ(h(x1, . . . , xn)) ≤ T1(x1) · · ·Tn(xn)

for all (x1, . . . xn) ∈ V1 × · · · × Vn.

Proof. “=⇒”: For any continuous seminorm ρ on W , by Proposition 2.1.7
and Proposition 2.1.11, B(0, {ρ}, 1) is open in W . Because h is continuous,
there exist open sets Uk ⊂ Vk which all contain 0 such that

h(U1 × · · · × Un) ⊂ B(0, {ρ}, 1)

By Proposition 2.1.9 and Proposition 2.1.11 there exist εk and continuous
seminorms σk on Vk such that

B(0, {σk}, εk) ⊂ Uk for all 1 ≤ k ≤ n.

Fix an (x1, . . . , xn) ∈ V1 × · · · × Vn.

CASE: σk(xk) 6= 0 for all k.
Let λk = 2σk(xk)/εk. Then for all 1 ≤ k ≤ n

σk(λ−1
k xk) = λ−1

k σk(xk) ≤ εk/2 < εk

so λ−1
k xk ∈ Uk. Then ρ(h(λ−1

1 x1, . . . , λ
−1
n xn)) < 1 and

ρ(h(x1, . . . , xn)) = λ1 · · ·λnρ(h(λ−1
1 x1, . . . , λ

−1
n xn))

< λ1 · · ·λn

= 2σ1(x1)
ε1

. . .
2σn(xn)
εn

.

CASE: σj(xj) = 0 for some j.
Then µ−1xj ∈ B(0, {σj}, εj) for any µ > 0 thus

ρ(h(λ−1
1 x1, . . . , µ

−1xj , . . . , λ
−1
n xn)) ≤ 1
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where λk’s are defined as above. So, similarly

ρ(h(x1, . . . , xn)) ≤

∏
k 6=j

λk

µ
for any µ > 0, so ρ(h(x1, . . . , xn)) = 0 and it is trivial that

ρ(h(x1, . . . , xn)) ≤ 2σ1(x1)
ε1

· · · 2σn(xn)
εn

.

Since xk’s are arbitrary and εk’s only depend on ρ, by letting Tk = 2σk/εk,
we prove the right direction.

“⇐=”: To prove the other direction, let (x1, ..., xn) ∈ V1 × ... × Vn.
Assume Ω is an open set in W such that h(x1, · · · , xn ∈ Ω. By Proposi-
tion 2.1.9, there exists a continuous seminorm ρ on W such that that

ρ(z − h(x1, · · · , xn)) < ε

for any z ∈ W . By hypothesis, there exist continuous seminorms τ1, ..., τn
on V1, · · · , Vn satisfying the hypothesis inequality. Let

M =
(

max
1≤i≤n

τi(xi)
)

+ 1

and fix α > 0. Consider (y1, ..., yn) ∈ V1, ..., Vn such that τi(yi − xi) < α for
all i.

Observe we have the following telescopic sum

h(y1, ..., yn)− h(x1, ..., xn) =
n∑
j=1

[
h(x1, ..., xj−1, yj , , ..., yn)−

− h(x1, ..., xj , yj+1, ..., yn)
]

=
n∑
j=1

h(x1, ..., xj−1, yj − xj , yj+1, ..., yn)

where the last equality is because h is multilinear. Therefore,

ρ
(
h(y1, ..., yn)− h(x1, ..., xn)

)
≤

n∑
j=1

τ1(x1) · · · τj−1(xj−1)τj(yj − xj)·

· τj+1(yj+1) · · · τn(yn)
≤ nα(M + α)n−1 (by triangle inequality)
< ε (for small enough α > 0)

And so h(
∏n
i=1B(xi, {τi}, α)) ⊂ Ω. Hence h is continuous.
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We’ll denote the space of continuous multilinear maps V1× ...×Vn →W
by Ln(V1, ..., Vn;W ). This is a vector space and we’ll give it a topology at
a later time.

Definition 2.1.22. A morphism from a TVS (V1, τ1) to a TVS (V2, τ2) is
both a morphism of topological spaces (continuous function) and a morphism
of vector spaces (linear transformation).

Remark 2.1.23. The definition of an isomorphism of TVS’s follows immedi-
ately.

Definition 2.1.24. Two topological vector spaces (V1, τ1) and (V2, τ2) are
isomorphic as topological vector spaces if and only if there exists a linear
bijection f : V1 → V2 such that both f and f−1 are continuous.

Definition 2.1.25. Let (V, τ) be a locally convex topological vector space.
Then V ′ := L1(V ; K) is the topological dual space of V .

Note that we can consider the dual space of the dual space: L1(V ′; K)
which we call the double dual space. We denote this by V ′′.

Definition 2.1.26. Let (V, τ) be a TVS. A subset A ⊂ V is a bounded
subset if and only if for any open set Ω in V containing 0, there exists λ > 0
such that λA ⊂ Ω.

In other words, a bounded subset can always be rescaled to fit inside any
open set as long as the open set contains 0. In general, bounded sets are
much smaller than multiballs and open sets.

insert R2 example

Proposition 2.1.27. Let (V, τ(N)) be a LCTVS and A ⊂ V . Then the
following are equivalent.

1. A is bounded.

2. For every continuous seminorm ρ, ρ(A) is bounded (in R)

3. For every ρ ∈N, ρ(A) is bounded.
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Proof. We’ll show 2 is equivalent to 3 and 1 is equivalent to 2.

(2⇒ 3) Trivial because ρ ∈N is automatically continuous relative to N.

(3 ⇒ 2) If ρ is continuous, then ρ ≤ C(ρ1 + · · · ρn) where ρi ∈ N. By
assumption, there exists Mi > 0 (for 1 ≤ i ≤ n), such that for all x ∈ A,
ρi(x) ≤ Mi. Therefore ρ(x) ≤ C(M1 + ... + Mn) for all x ∈ A and we have
ρ(A) is bounded.

(1 ⇒ 2) Assume ρ is a continuous seminorm. Since B(0, {ρ}, 1) is an open
set, A bounded implies λA ⊂ B(0, {ρ}, 1) for some λ > 0. Therefore,
ρ(λx) < 1 for all x ∈ A which is equivalent to ρ(x) < λ−1 for all x ∈ A.
Hence ρ(A) is bounded.

(2 ⇒ 1) Let Ω ⊂ V be an open set containing 0. We want to show that
there exists λ > 0 such that λx ∈ Ω for all x ∈ A. By Proposition 2.1.9,
there exists a continuous seminorm ρ and ε > 0 such that B(0, {ρ}, ε) ⊂ Ω.
By hypothesis, ρ(A), is bounded so there exists M > 0 such that ρ(x) ≤M
for all x ∈ A. Fix λ = ε/2M > 0 and x ∈ A. It follows that

ρ(λx) ≤
(

ε

2M

)
M < ε → λx ∈ Ω

and so A is bounded. This completes the proof.

Proposition 2.1.28. Let (V, τ) be a LCTVS with topological dual V ′. Fix
a bounded subset A ⊂ V . For functional L ∈ V ′, define

‖L‖A := sup
x∈A
|L(x)|.

Then ‖ · ‖A is a seminorm on V ′.

Proof. First check that ‖ · ‖A is well defined over V ′. Let L ∈ V ′ meaning
L : V → K is a continuous linear form. Note that absolute value map | · | on
K is a seminorm. By Theorem 2.1.21, there exists a continuous seminorm
ρ on V such that |L(y)| ≤ ρ(y) for all y ∈ V . Since A is bounded, ρ(A) is
bounded by Proposition 2.1.27 and so we get |L(x)| is finite for all x ∈ A.
Hence, ‖ · ‖A is well defined.

It is easy to check that ‖ · ‖A preserves scaling and is subadditive. Fix
λ ∈ K and L1, L2 ∈ V ′.

‖λL‖A = sup
x∈A
|λL(x)| = sup

x∈A
|λ| |L(x)| = |λ| ‖L‖A
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‖L1 + L2‖A = sup
x∈A
|L1(x) + L2(x)|

≤
(

sup
x∈A
|L1(x)|

)
+
(

sup
x∈A
|L2(x)|

)
= ‖L1‖A + ‖L2‖A

and so ‖ · ‖A is a seminorm on V ′.

Definition 2.1.29. The topology on V ′ which we will use is

τ({‖ · ‖A : A ⊂ V bounded}).

We call this topology the strong topology and V ′ equipped with the strong
topology is called the strong dual.

Be aware that the definition of the strong topology is done over all
bounded subsets A of V . Observe that this is the topology of uniform
convergence.

Another topology which is common is to only consider singleton sets, i.e.,
τ({| · (x)| : x ∈ V }). This topology is known as the weak-* topology which
corresponds with the topology of pointwise convergence. These lecture notes
will focus soley on the strong topology.

Proposition 2.1.30. Let (V, τ) be a LCTVS. There exists a natural linear
map

ev

{
V → V ′′

x 7→ ev(x)

where for all L ∈ V ′, ev(x)(L) = L(x). This map is called the evaluation map.

Proof. Fix x ∈ V . The map ev(x) is a well defined function since ev(x)(L) =
L(x) is finite for all L ∈ V ′. Furthermore, ev(x) is also linear (in V and in
V ′). Indeed,

ev(x+ y)(L) = L(x+ y) = L(x) + L(y) = ev(x)(L) + ev(y)(L)

and

ev(x)(L+M) = (L+M)(x) = L(x) +M(x) = ev(x)(L) + ev(x)(M).

We need to show ev(x) is continuous for strong topology on V ′.
Take A = {x} ⊂ V . Since a singleton set, A is automatically a bounded

set in V . Since
|L(x)| = sup

y∈A
|L(y)| = ‖L‖A
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for all L ∈ V ′ it follows that

|ev(x)(L)| ≤ ‖L‖A

for all L ∈ V ′. But ‖ · ‖A is a generator for the strong topology on V ′ and
so it follows that |ev(x)| (a seminorm on V ′) is continuous. Hence ev(x)
is also continuous which allows us to say ev(x) ∈ V ′′. This completes the
proof.

Notice that we in fact showed that for any x ∈ V , ev(x) : V ′ → K is
continuous with respect to the weak-* topology. Indeed the proof only uses
a singleton set {x} in V which is exactly a generator for the weak-* topology.

Definition 2.1.31. Let (V, τ) be a LCTVS. It is reflexive if and only if
V

ev−→ V ′′ is an isomorphism of TVS, i.e., bijective with ev and it’s inverse
continuous.

2.2 Multisequences With Fast Decay

Definition 2.2.1. A Fréchet space (this is equivalent to the original defini-
tion of Fréchet space)

1. has a topology induced by a countable number of seminorms

2. is Hausdorff

3. is a TVS with respect to that topology

4. is complete with respect to the metric induced by that topology

Definition 2.2.2. The space of multisequences with fast decay is the TVS

s(Nd
0,K) := {multisequences with fast decay}

:= {(xα)α∈Nd0
∈ KNd0 | ∀k ∈ N0, ‖x‖∞,k <∞}

where ‖x‖∞,k := supα∈Nd0
〈α〉k |xα| ∈ [0,∞] is a norm, and the topology

is T({ ‖ · ‖∞,k | k ∈ N0}).

Remark 2.2.3. The above is a well-defined TVS.

Proposition 2.2.4. s(Nd
0,K) is Fréchet.
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Proof. By definition, s = s(Nd
0,K) is already a TVS with its topology induced

by a countable number of seminorms. It can be verified that this space is
Hausdorff. The only thing left to verify is that the metric is complete.

We define

d(x, y) :=
∑
n≥1

2−n min{1, ‖x− y‖∞,n−1}.

Now T({ ‖ · ‖∞,k | k ∈ N0}) = T(d) is guaranteed as long as d is a
distance (but we will not prove d is a distance here. We will assume that
is true). We can now show that s is complete with respect to d instead of
working directly with the seminorms.

Let (x(m))m≥1 :=
((

(xα)α∈Nd0

)(m)
)
m≥1

be a Cauchy sequence of se-

quences (xα)α∈Nd0
. By definition of Cauchy, this means that

∀ε > 0, ∃M ≥ 0,∀p, q ≥M, d(x(p), x(q)) < ε.

But 2−1 min{1, ‖x− y‖∞,0} = 2−1 min{1, ‖x− y‖∞,1−1} ≤ d(x(p), x(q)),
so (x(m))m≥1 is Cauchy for ‖ · ‖∞,0 too.

So for any fixed α,
(
x

(m)
α

)
m≥1

is Cauchy in K. Because K is complete,

limm→∞ x
(m)
α exists. So we define

xα := lim
m→∞

x(m)
α .

Since this happens for each α, we now define

x := (xα)α∈Nd0
.

Remember, we are trying to prove that (x(m))m≥1 converges. We now
prove that (x(m))m≥1 converges to x. But first, a lemma:

Lemma 2.2.5.

1. ∀k, ∀p,
∥∥∥x(p) − x

∥∥∥
∞,k

<∞

2. ∀k, limp→∞
∥∥∥x(p) − x

∥∥∥
∞,k

= 0

Proof. We know, for any fixed k ≥ 0,

2−(k+1) min
{

1,
∥∥∥x(p) − x(q)

∥∥∥
∞,k

}
≤ d(x(p), x(q)).

Since (x(m))m≥1 is Cauchy, ∀ε,∃M, ∀p, q ≥M,

2−(k+1) min
{

1,
∥∥∥x(p) − x(q)

∥∥∥
∞,k

}
≤ d(x(p), x(q)) < ε

min
{

1,
∥∥∥x(p) − x(q)

∥∥∥
∞,k

}
< 2k+1ε
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Now as long as we chose our ε to be smaller than 2−(k+1) in the first place,
we have min

{
1,
∥∥∥x(p) − x(q)

∥∥∥
∞,k

}
< 1, so that min

{
1,
∥∥∥x(p) − x(q)

∥∥∥
∞,k

}
=∥∥∥x(p) − x(q)

∥∥∥
∞,k

. Consequently, we no longer have to bother with the min{1, ·}
part of our expression:

∥∥∥x(p) − x(q)
∥∥∥
∞,k

< 2k+1ε

sup
α∈N0

〈α〉k
∣∣∣x(p)
α − x(q)

α

∣∣∣ < 2k+1ε

Since this is true for all q ≥ M , we can let q → ∞ while leaving the
other variables alone:

sup
α∈N0

〈α〉k
∣∣∣x(p)
α − xα

∣∣∣ < 2k+1ε∥∥∥x(p) − x
∥∥∥
∞,k

< 2k+1ε∥∥∥x(p) − x
∥∥∥
∞,k

<∞

To summarize, we have shown that ∃M,∀p ≥M,
∥∥∥x(p) − x

∥∥∥
∞,k

<∞.

This proves item (a).
((this next part is unclear:
and x(p) ∈ s =⇒ ‖x‖∞,k <∞ for all x ∈ s, for all k ∈ Nd

0.
))
Now since ∀ε, ∃M,∀p ≥M,

∥∥∥x(p) − x
∥∥∥
∞,k

< 2k+1ε, we have that

∀k, lim
p→∞

∥∥∥x(p) − x
∥∥∥
∞,k

= 0,

so we have proven item (b).

We now continue with our main proof, using the lemma to show that
d(x(p), x)→ 0...

d is a summation, so the idea is to chop off a tail from d that is small
enough.

Let (x(m))m≥1 be Cauchy for d. It follows that for all p, q ≥ 1, for all
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r ∈ N,

d(x(p), x(q)) :=
∞∑
n=1

2−n min
{

1,
∥∥∥x(p) − x(q)

∥∥∥
∞,n−1

}

≤
r∑

n=1
2−n min

{
1,
∥∥∥x(p) − x(q)

∥∥∥
∞,n−1

}
+

∞∑
n=r+1

2−n

=
∞∑

n=r+1
2−n +

r∑
n=1

2−n min
{

1,
∥∥∥x(p) − x(q)

∥∥∥
∞,n−1

}

= 2−r +
r∑

n=1
2−n min

{
1,
∥∥∥x(p) − x(q)

∥∥∥
∞,n−1

}

We will now pick an r so that each piece of the above is bounded by ε
2

and thus d(x(p), x(q)) < ε.
Let ε > 0. Pick r s.t. 2−r < ε

2 . This bounds one piece.
As for

∑r
n=1 2−n min{1,

∥∥∥x(p) − x(q)
∥∥∥
∞,n−1

}, note first that this is a finite
sum, and second that for all n, for any ε, there exists an M s.t. for all
p, q ≥M ,

∥∥∥x(p) − x(q)
∥∥∥
∞,n−1

< 2nε. So we choose ε
2r as our ε, and then for

p, q ≥M1, , ,Mr, we have
r∑

n=1
2−n min

{
1,
∥∥∥x(p) − x(q)

∥∥∥
∞,n−1

}

≤
r∑

n=1
2−n

∥∥∥x(p) − x(q)
∥∥∥
∞,n−1

<
r∑

n=1
2−n

(
2n ε2r

)

=
r∑

n=1

ε

2r

= ε

2
So we have ∀ε, ∃M,∀p, q ≥M , d(x(p), x(q)) < ε as desired. Again we can

hold all variables constant while letting q →∞, so that

∀ε, ∃M,∀p, q ≥M,d(x(p), x) < ε,

and therefore d(x(p), x) → 0 and so (x(m))m≥1 converges to x. Yay!
((unsure if what i did immediately above was legal or not))

We conclude that (x(m))m≥1 is complete with respect to d, and thus with
respect to T(d), and thus with respect to T({ ‖ · ‖∞,k | k ∈ N0}).

All of the properties of Fréchet have been satisfied, so we conclude that
s = s(Nd

0,K) is Fréchet.



2.2. MULTISEQUENCES WITH FAST DECAY 73

Proposition 2.2.6 (“one c to bound them all”). Let V1, , , Vn,W be normed
spaces and h : V1 × × × Vn → W be multilinear. Then h is continuous iff
∃c > 0, ∀(x1, , , xn) ∈ V1 ××× Vn, ‖h(x1, , , xn)‖W ≤ c ‖x1‖V1

· · · ‖xn‖Vn.

Proof. Please recall theorem 2.1.21.

• “ =⇒ ”
Given h is continuous, then because ‖ · ‖W itself is continuous with
respect to {‖ · ‖W }, theorem 2.1.21 gives us that

‖h(x1, , , xn)‖W ≤ T1(x1) · · ·Tn(xn)

for some Tk continuous with respect to {‖ · ‖Vk}. But Tk continuous
with respect to {‖ · ‖Vk} means that there exists some ck such that
Tk ≤ ck ‖ · ‖Vk . So we have

‖h(x1, , , xn)‖W ≤ T1(x1) · · ·Tn(xn)
≤ c1 ‖x1‖V1

· · · cn ‖xn‖Vn
= (c1 . . . cn) ‖x1‖V1

· · · ‖xn‖Vn
= c ‖x1‖V1

· · · ‖xn‖Vn
as desired, as long as we choose c = c1 . . . cn.

• “⇐=”
In order to apply theorem 2.1.21 to our situation, we need only show
that not just ‖ · ‖W , but ALL seminorms ρ continuous with respect to
{‖ · ‖W } satisfy the inequality ρ(h(x1, , , xn)) ≤ T1(x1) · · ·Tn(xn) for
some continuous seminorms Tk on Vk.
But since ρ is continuous with respect to {‖ · ‖W }, then ρ ≤ cρ ‖ · ‖W
for some constant cρ. It follows immediately that

ρ(h(x1, , , xn)) ≤ cρ ‖h(x1, , , xn)‖W
≤ cρc ‖x1‖V1

· · · ‖xn‖Vn
= T1(x1) · · ·Tn(xn)

as long as we choose T1 = cρc ‖ · ‖V1
and Tk = ‖ · ‖Vk for all k 6= 1,

which are certainly all continuous seminorms on Vk.
We have now satisfied the conditions of theorem 2.1.21, so we get that
h is continuous as desired.

Proposition 2.2.7. Let (V, ‖ · ‖) be a normed space and A ⊂ V . Then A is
bdd by the TVS definition of bdd iff A is bdd by the normed space definition
of bdd.
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Proof. Please recall proposition 2.1.27.
Remember that (V, ‖ · ‖) is a LCTVS because its topology is the topology

T({‖ · ‖}) induced from the seminorm ‖ · ‖.
Therefore proposition 2.1.27 gives us the following equivalence:

A is bdd by the TVS definition of bdd
iff ∀ρ ∈ {‖ · ‖}, ρ(A) is bdd in R

iff ‖A‖ is bdd in R

iff sup
x∈A
‖x‖ is finite

iff A is bdd by the normed space definition of bdd.

Proposition 2.2.8. Let (V, ‖ · ‖) be a normed space. Then V ′ = V ′, where
the LHS is the strong dual of V as a LCTVS and the RHS is the dual of V
as a normed space defined using the operator norm ‖ · ‖L1(V,K).

Proof. • “ =⇒ ”

For any linear form L : V → K, we know that

‖L‖V ′ := sup
x∈V r{0}

|L(x)|
‖x‖

is the operator norm of L. We wish to show that T({ ‖ · ‖V ′}) =
T({‖ · ‖A | A ⊂ V,A bounded}).

If we choose cleverly a specific A := {x ∈ V | ‖x‖ ≤ 1} (note that A is
bounded in the LCTVS sense), then we have that

‖L‖V ′ := sup
x∈A
|L(x)| .

Since L was arbitrary, this implies that ‖ · ‖V ′ is continuous with re-
spect to {‖ · ‖A | A ⊂ V,A bounded}.

• “⇐=”

Conversely, let A ⊂ V be bounded (and ignore the trivial cases A = ∅
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and A = {0}). Then supx∈A ‖x‖ = B <∞. It follows that

‖L‖A = sup
x∈A
|L(x)|

= sup
x∈Ar{0}

|L(x)|

= sup
x∈Ar{0}

|L(x)|
‖x‖

· ‖x‖

≤ sup
x∈V r{0}

|L(x)|
‖x‖

· sup
x∈A
‖x‖

≤ ‖L‖V ′ ·B
<∞

Since L was arbitrary, this implies that for every A, ‖ · ‖A is continuous
with respect to ‖ · ‖V ′ . This implies that {‖ · ‖A | A ⊂ V,A bounded}
is continuous with respect to ‖ · ‖V ′ .

• “=”
Putting it all together, we have shown that ‖ · ‖V ′ and {‖ · ‖A | A ⊂
V,A bounded} are continuous with respect to each other. Therefore,
they induce the same topology. This gives T({ ‖ · ‖V ′}) = T({‖ · ‖A |
A ⊂ V,A bounded}) as desired.

Corollary 2.2.9. Let (V, ‖ · ‖) be a normed space. Then V is reflexive in
the normed space sense iff V is reflexive in the LCTVS sense.

Example 2.2.10. (V, ‖ · ‖) = (L2(X,A, µ,K), ‖ · ‖L2) is reflexive.

For x = (xα)α∈Nd0
∈ KNd0 , we defined for k ∈ N0,

‖x‖∞,k = sup
α∈Nd0

(〈α〉k|xα|)

where for z ∈ Rd ⊃ Nd
0,

〈z〉 =
√

1 + |z|2.

Define
s(Nd

0,K) = {x ∈ KNd0 | ∀ k ≥ 0, ‖x‖∞,k <∞}

with topology τ({‖ · ‖∞,k | k ≥ 0}).

Theorem 2.2.11. s(Nd
0,K) is Fréchet. (Yes, this is redundant, and redun-

dancy is okay. This happened because the theorem was incorrectly proved the
first time. But the first version of the proof in the notes has been fixed, so
now we have two versions of the correct proof.)
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Proof. Define
d(x, y) =

∑
k≥1

2−k min(1, ‖x− y‖∞,k−1).

It is easy to see that d defines the topology, and so s is metrizable. It remains
to show that it is complete.

Suppose (x(m))m≥1 is Cauchy in s for d. First, we show that for all k ≥ 0,
(x(m))m≥1 is Cauchy for ‖ · ‖∞,k. Let k ≥ 0 and ε > 0. Then there exists an
M ≥ 0 such that for p, q ≥M ,

d(x(p), x(q)) < 2−(k+1) min(1/2, ε).

Then

2−(k+1) min(1, ‖x(p) = x(q)‖∞,k) ≤ d(x(p), x(q)) < 2−(k+1) min(1/2, ε).

Since d(x(p), x(q)) ≤ 1, we have that

min(1, ‖x(p) − x(q)‖∞,k) = ‖x(p) − x(q)‖∞,k < ε.

Now, since ‖ · ‖∞,0 is the norm of uniform convergence on Nd
0, since

(x(m))m≥1 is Cauchy in ‖ · ‖∞,0, it is pointwise Cauchy, i.e. for all α ∈ Nd
0,

if (x(m)
α )m≥1 is Cauchy in K, then it converges to xα. This defines x =

(xα)α∈Nd0
.

Claim: For all k ≥ 0, ‖x(m) − x‖∞,k is finite and converges to 0 as
m→∞.

Fix k, and suppose (x(m))m≥1 is Cauchy for ‖ · ‖∞,k. Then for all ε > 0,
there exists an M such that for all p, q ≥M ,

‖x(p) − x(q)‖∞,k = sup
α∈Nd0

〈α〉k|x(p)
α − x(q)

α | ≤ ε.

Hence, for all p, q ≥M and all α,

〈α〉k|x(p)
α − x(q)

α | ≤ ε.

Taking the limit q →∞, we have that for all p ≥M and α ∈ Nd
0,

〈α〉k|x(p)
α − xα| ≤ ε,

i.e. for all p ≥M , ‖x(p) − x‖∞,k ≤ ε. Hence x ∈ s (is we choose x(p) ∈ s).
Moreover, for all k ≥ 0,

lim
m→∞

‖x(m) − x‖∞,k = 0.

So, let ε > 0, and choose K ≥ 0 so that 2−K ≤ ε/2. Then

d(x(m), x) ≤ 2−K +
K∑
k=0

2−k min(1, ‖x(m) − x‖∞,k−1)
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where the first term is smaller than ε/2 and the second term limits to 0 as
m→∞. Hence

lim
m→∞

d(x(m), x) = 0,

which implies that (s, d) is a complete metric space, which then implies that
it is Fréchet.

Definition 2.2.12. For all p ∈ [1,∞), x ∈ s, and k ≥ 0, let

‖x‖p,k =

 ∑
α∈Nd0

〈α〉k|xα|p


1/p

.

Remark 2.2.13. This is ‖ · ‖Lp for (Nd
0,P(Nd

0), µk) where µk is defined on
singletons by µk({α}) = 〈α〉k.

Note that ‖ · ‖L∞ 6= ‖ · ‖∞,k.

Proposition 2.2.14. For all p ∈ [1,∞), {‖ · ‖p,k : k ∈ N0} is a defining
collection of seminorms.

Corollary 2.2.15. For each k ≥ 0, let Hk denote the Hilbert space L2(Nd
0,P(Nd

0),K).
Then Hk ⊂ Hk+1 and

s =
⋂
k≥0

Hk.

Remark 2.2.16. For all p ∈ [1,∞], ‖·‖p,k ≤ ‖·‖p,k+1 because the dependence
in k for µk is based on the weight.

Before we prove Propostion 2.2.14, we will need a lemma.

Lemma 2.2.17. Let λ ∈ R. Then if λ > d, we have∑
α∈Nd0

〈α〉−λ <∞.

Proof. Recall that for a ∈ R, 2a ≤ 1 + a2 (because (a − 1)2 ≥ 0. Then for
x, y ∈ Rd,

〈x+ y〉2 = 1 + |x+ y|2

≤ 1 + |x|2 + |y|2 + 2|x||y|
≤ 1 + |x|2 + |y|2 + 1 + |x|2|y|2

≤ 2 + (1 + |x|2)(1 + |y|2)

Hence 〈x+ y〉 ≤
√

2〈x〉〈y〉.
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Now, if u ∈ [0, 1)d, then |u| ≤
√
d, and so 〈u〉 ≤

√
d+ 1. Let λ > d,

α ∈ Nd
0, and u ∈ [1, 0)d. We have 〈α+ u〉 ≤

√
2〈α〉
√
d+ 1. Then

〈α〉−λ ≤ (2(d+ 1))λ/2〈α+ u〉−λ

≤ (2(d+ 1))λ/2
∫

[0,1)d
ddu〈α+ u〉−λ,

and so, using countable additivity of measure and then switching to spherical
coordinates, we have

∑
α∈Nd0

〈α〉−λ ≤ (2(d+ 1))λ/2
∫

[0,∞)d
ddx〈x〉−λ

≤ (2(d+ 1))λ/2
∫

Rd
ddx〈x〉−λ

= (2(d+ 1))λ/2V old−1(Sd−1)
∫ ∞

0

rd−1

(1 + r2)λ/2
dr

Since the integral is finite, we have proved the lemma.

Now, we are ready to prove Proposition 2.2.14.

Proof. Suppose p ∈ [1,∞) and k ∈ N0 We first show that ‖ · ‖p,k is finite.
If x ∈ s, then ‖x‖pp,k =

∑
α∈Nd0

〈α〉k|xα|p. Pick m > k+d
p . Then k−mp <

d, and by the preceeding lemma,

‖x‖pp,k =
∑
α∈Nd0

〈α〉k(〈α〉−m‖x‖∞,m)p

= ‖x‖∞,m
∑
α∈Nd0

〈α〉k−mp <∞

Hence ‖x‖p,k < ∞. Moreover, ‖ · ‖p,k ≤ (constant) ‖ · ‖∞,m, i.e. ‖ · ‖p,k is
continuous relative to the ‖ · ‖∞,k seminorms.

It remains to show that ‖ · ‖∞,k is continuous relative to ‖ · ‖p,k. For
m ≥ kp,

(‖x‖∞,k)p = sup
α

(〈α〉k|xα|)p

≤
∑
α

〈α〉kp|xα|p

≤
∑
α

〈α〉m|xα|p.

Hence ‖·‖∞,k ≤ ‖·‖p,k, which implies ‖·‖∞,k is continuous relative to ‖·‖p,k.
So, N= {‖ · ‖p,m|m ∈ N0}.
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A variant: One can also define for d ≥ 1

s(Zd,K) = {(xα)α∈Z ∈ KZd | ∀ k ∈ N0, ‖x‖∞,k <∞}

where ‖x‖∞,k = supα∈Zd〈α〉k|xα|.
Let τ be the topology defined by these seminorms. 1

Theorem 2.2.18. For all d ≥ 1, s(Zd,K) ' s(Nd
0,K) as TVSs.

Proposition 2.2.19. s(Zd,K) is isomorphic as a topological vector space to
s(Nd

0,K).

Proof. Define a bijection τ : N0 → Z by (τ(0), τ(1), τ(2), . . . ) = (0, 1,−1, 2,−2, 3, . . . ),
i.e. for n ∈ N0,

τ(n) =
{
−n/2 n ≡ 0 mod 2
n+1

1 n ≡ 1 mod 2
.

Next define
σ : Nd

0 → Zd

α = (α1, . . . , αd) 7→ σ(α) := (τ(α1), . . . , τ(αd)).

Furthermore, define
L : s(Zd)→ s(Nd

0)

L(x) = x ∗ σ

x = (xα)α∈Zd 7→ L(x) = (xσ(α))α∈Nd0
.

Note,

〈σ(α)〉2 = 1 +
d∑
i=1

τ(αi)2 ≤ 1 +
d∑
i=1

(αi + 1
2

)2

so that for all a, b ∈ R, (a− b)2 ≥ 0⇒ (a+ b)2 ≤ 2(a2 + b2),

〈σ(α)〉2 ≤ 1 +
d∑
i=1

1
2(α2

i + 1) ≤ (1 + d/2) + 1
2

d∑
i=1

α2
i ≤ (1 + d/2)〈α〉2

⇒ ∃c1 > 0, ∀d ∈ Nd
0, 〈σ(α)〉 ≤ c1〈α〉,

e.g., we can let c1 =
√

1 + d/2.

1One can, in the preceding proposition, replace Nd0 with Zd everywhere with no change
except the step establishing 〈α〉−λ ≤ ...

∫
Rd d

dx〈x〉−λ.
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If n ∈ N0 is even, n = 2|τ(n)|.

If n ∈ N0 is odd, n < n+ 1 = 2|τ(n)|. Therefore,

∀n, n ≤ 2|τ(n)|

⇒ ∀α ∈ Nd
0, 〈α〉2 = 1 +

d∑
i=1

α2
i ≤ 1 +

d∑
i=1

4τ(αi)2 ≤ 4〈σ(α)〉2

⇒ ∃c2 > 0, ∀α ∈ Nd
0, 〈α〉 ≤ c2〈σ(α)〉,

e.g. we can let c2 = 2.

We verify that L is well-defined. If x ∈ s(Zd), L(x) ∈ KNd0 , let k ≥ 0,
note

||L(x)||α,k = sup
β∈Nd0

〈β〉k|xσ(β)| ≤ ck2 sup
β∈Nd0

〈σ(β)〉k|xσ(β)| = ck2 sup
α∈Zd
〈α〉k|xα|,

so L is well-defined and continuous, as the final expression is ||x||∞,k <∞.
Note we used the bijectivity of σ at this step.

Conversely: let
R : N → s(Zd)

y 7→ y ◦ σ−1

so ∀α ∈ Zd, (y ◦ σ−1)α = yσ−1(α). We now note that

k ≥ 0, ||R(y)||∞,k =
∑
α∈Zd

〈α〉k|yσ−1(α)|

and using the bijectivity of our map, this expression is equal to

sup
β∈Nd0

〈σ(β)〉k|yβ| ≤ ck1 sup
β∈Nd0

〈β〉k|yβ|

⇒ ∀k ∈ N0, ∀y ∈ s(Nd
0), ||R(y)||∞ ≤ ck1||y||∞,k

⇒ R(y) ∈ s(Zd),

and therefore R is continuous using the criterion for the continuity of multi-
linear maps. Furthermore, L andR are inverse to each other by construction,
so our work is done.

Theorem 2.2.20. ∀d ≥ 2, s(Nd
0,K) is isomorphic as a topological vector

space to s(N0,K) =: s(K) (also denoted s).
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Proof. Recall N2
0 ' N0 as sets. We employ the bijection of these sets that

enumerates the elements of N2
0 in the following way:

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), . . .

. This enumeration corresponds to the general construction for d ≥ 2:

ρd : N0 → Nd
0

where ∀k ≥ 0, sk := {α ∈ Nd
0 : α1 + · · · + αd = k}; in our initial enu-

meration, s2 would corresponds to {(0, 2), (1, 1), (2, 0)}, for example. Then
putting sk’s consecutively, we obtain (ρd(0), ρd(1), . . . ), where inside each sk
block, we use lexicographic order. Therefore, in our original construction,
ρ2(0) = (0, 0), ρ2(1) = (0, 1), ρ2(1) = (1, 0), and so on.

We note that in this process, we consider a dictionary where 0 = A, 1 =
B, . . . , e.g., for d = 3, k = 2, the ordering inside s2 is:

(0, 0, 2), (0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0).

We have that

|sk| =
(
k + d− 1
d− 1

)
= (k + 1)(k + 2) . . . (k + d− 1)

(d− 1)! .

The key remark here is that |sk| grows polynomially in k (≈ kd−1).

Lemma 2.2.21. ∃c1, c2 > 0 such that ∀n ∈ N0,

〈ρd(n)〉 ≤ c1〈n〉

〈n〉 ≤ c2〈ρd(n)〉.

Proof. Let ρd(n) = (α1, . . . , αd) ∈ sk so that |α| = k. Our proof of the
lemma begins with the observation that if ρd(n) ∈ sk, then k ≤ n because

n ≥ |s0|+ · · ·+ |sk−1| ⇒ n ≥ k.

If ρd(n) = (α1, . . . , αd), then

〈ρd(n)〉2 = 1 + α2
1 + · · ·+ α2

d

≤ 1 + (α1 + · · ·+ αd)2

= 1 + k2

≤ 1 + n2

= 〈n〉2,
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so c1 = 1 suffices.

Next, we note that

N = |s0|+ · · ·+ |sk|
= |{α ∈ Nd

0 : α1 + · · ·+ αd ≤ k}|
= |{B ∈ Nd+1

0 : β1 + · · ·+ βd+1 = k}|

= (k + 1) · · · (k + d)
d!

≤ (k + d)d

d!

and given that ρd(n) = (α1, . . . , αd), we have α1 + · · ·+ αd = k, and

k + d = d ∗ 1 + 1 ∗ α1 + · · ·+ 1 ∗ αd
= 〈d, 1, . . . , 1〉 • 〈1, α1, . . . , αd〉
≤ ‖〈d, 1, . . . , 1〉‖ ‖〈1, α1, . . . , αd〉‖ (by Cauchy-Schwarz)

=
√
d2 + d ·

√
1 + α2

1 + · · ·+ α2
d.

Note that the second square root is less than 〈ρd(n)〉. Now we note that for
N ≥ 1, we have

0 ≤ n ≤ N − 1 < N

⇒ 〈n〉 < N ≤ (k + d)d

d! ≤ 1
d!

(√
d(d+ 1)〈ρd(n)〉

)d
⇒ 〈n〉 ≤ c2〈ρd(n)〉d

so that c2 =
√
d(d+1)

d

d! suffices.

We are now prepared to proceed with the proof of the theorem; we have

L : s(Nd
0)→ s(N0)

and R a map in the reverse direction. For x ∈ s(Nd
0) and y ∈ s(N0), we have

L(x) = x ◦ ρd

R(y) = y ◦ ρ−1
d

k ≥ 0, ||L(x)||α,k = sup
n≥0
〈n〉k|xρd(n)|

≤ ck2 sup
n≥0
〈ρd(n)〉dk|xρd(n)|
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where supn≥0〈ρd(n)〉dk|xρd(n)| = ||x||∞,dk. Therefore, L is well-defined and
continuous. To determine that R and L are inverse to each other, consider

||R(y)||∞,k = sup
α∈Nd0

〈α〉k|yρ−1
d

(α)|

= sup
n∈N0

〈ρd(n)〉k|yn|

where 〈ρd(n)〉k ≤ 〈n〉. Therefore, ||R(y)||∞,k ≤ ||y||∞,k, so that L and R are
indeed inverse to each other.

2.2.1 Schwartz Space

For f : Rd → K a C∞ function, α ∈ Nd
0, and k ∈ N0, we define

‖f‖α,k := sup
x∈Rd
〈x〉k |∂αf(x)| ∈ [0,∞]

The Schwartz space S(Rd) = S(Rd,K) is then defined to be the vector
space

S(Rd,K) := {f : Rd → K | f is C∞, ‖f‖α,k <∞ for all α ∈ Nd
0, k ∈ N0}

Each ‖ · ‖∞,k is a seminorm on S(Rd). The standard topology on S(Rd) is
τ ({‖ ·‖α,k | α ∈ Nd

0, k ∈ N0}). Because ‖ ·‖0,0 is a norm and the collection of
seminorms defining the topology is countable, S(Rd) is both Hausdorff and
metrizable. We now define the space of temperate (tempered) distri-
butions on Rd with values in K, S′(Rd,K) = S′(Rd), to be the (strong)
dual of S(Rd).

When there are functions of multiple variables at play, we may write
φ(x) or S′x(Rd) to clarify which expressions are evaluated by elements of the
Schwartz distribution space and which are treated as constants. For φ ∈ S′,
we write

φ(f) = 〈φ, f〉 = 〈φ(x), f(x)〉x
for the duality pairing, i.e., the evaluation of the linear form φ at f ∈ S
(thought as a test function). Heuristically, one should think of φ(f) as

φ(f) =
∫

Rd
φ(x) f(x) dd(x)

for some “function” φ(x). For n ∈ N0, we define the standard nth Hermite
polynomial Hn(x) by

Hn(x) := (−1)nex2 dn

dxn

(
e−x

2)
By applying the Faá di Bruno formula, we obtain an explicit formula for

Hn(x).
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Proposition 2.2.22. For all n ∈ N0,

Hn(x) =
bn2 c∑
k=0

(−1)kn!
k!(n− 2k)! (2x)n−2k

Proof. By direct application of Faá di Bruno with g(x) = ex and f(x) =
−x2, we obtain

(−1)nHn(x) = ex
2 d

dxn
g(f(x))

= ex
2 ∑
k≥0

∑
n1,...,nk≥1

1

{
k∑
i=1

ni = n

}
g(k)(f(x))f

(n1)(x) · · · f (nk)(x)
k! n1! · · ·nk!

= ex
2

n∑
k=0

∑
2≥n1,...,nk≥1

1

{
k∑
i=1

ni = n

}
e−x

2 (−2)kx2−n1 · · ·x2−nk

k! n1! · · ·nk!

=
n∑
k=0

∑
2≥n1,...,nk≥1

1

{
k∑
i=1

ni = n

}
(−1)k2kx2k−n

k! n1! · · ·nk!

where we used that f (m)(x) = 0 for m > 2. Note that

k ≤ n =
k∑
i=1

nk ≤ 2k =⇒ k ≥ n

2 ,

so the first sum is in fact over n/2 ≤ k ≤ n. Also,

∑
2≥n1,...,nk≥1

1

{
k∑
i=1

ni = n

}(
k

n− k

)
= k!

(n− k)! (2k − n)!

and
n1! · · ·nk! = 2n−k

Therefore,

(−1)nHn(x) =
∑

n
2≤k≤n

(−1)k22k−nx2k−n

(n− k)! (2k − n)!

=
bn2 c∑
j=0

(−1)n−j(2x)n−2j

j! (n− 2j)!

where j = n− k.

We now define the nth Hermite function hn(x) by

hn(x) := π−
1
4 2−

n
2 (n!)−

1
2 e−

x2
2
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Because of the factor of e−
x2
2 , it is easily seen that hn ∈ S(R) ⊆ L2(R) for

all n ≥ 0. Moreover, the collection {hn | n ≥ 0} forms an orthonormal
Schauder basis of L2(R). More generally, one can define for all α ∈ Nd

0 the
Hermite function hα on Rd by

hα(x) := hα1(x) · · ·hαd(x)

Theorem 2.2.23 (Sequence Space Representation). The map S(Rd) →
s(Nd

0) given by
f 7−→

(∫
Rd
hα(x) f(x) ddx

)
α∈Nd0

is a well-defined isomorphism of topological vector spaces.

The proof of this result is postponed until Chapter 4.

Corollary 2.2.24. S(Rd) ∼= s(Nd
0) as topological vector spaces.

Corollary 2.2.25. S(Rd) is Fréchet.

Corollary 2.2.26. The maps S′(Rd)→ s′(Nd
0)→ s′(N0) given by

φ 7−→ (φ(hα))α∈Nd0
7−→ (φ(hρ−1

d
(α))ρ−1

d
(α)

are isomorphisms of topological vector spaces.

2.2.2 The Space s0

We will refer the Homework 6 of MATH 7310 much throughout this section.
Define the vector space s0 by

s0 := {x = (xn)n≥0 ∈ KN0 | xn = 0 for all but finitely many n}

As a vector space, s0 is isomorphic to
⊕

n≥0 K and K[x] (space of polynomi-
als). Categorically, s0 is the “directed colimit” of the directed system

K ↪→ K2 ↪→ K3 ↪→ · · ·

We endow s0 with the finest locally convex topology, namely τ (Nall(s0)).

Notation. s′0 := KN0 and s′0,+ := [0,∞)N0 ⊆ s′0

For x, y ∈ s′0, let

〈x, y〉 :=
∞∑
n=0

xnyn
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if this series converges. If ω = (ωn)n≥0 ∈ s′0,+, then for x ∈ s0 we define

‖x‖ω :=
∞∑
n=0

ωn |xn| <∞ (finite sum)

‖ · ‖ω is clearly a seminorm on s0.

Proposition 2.2.27. The collection {‖ · ‖ω | ω ∈ s′0,+} is a defining collec-
tion of seminorms for s0.

Proof. Let en := (0, 0, . . . , 0, 1, 0, . . . , 0) be the nth standard basis vector of
s0. Let ρ ∈Nall(s0). If x ∈ s0, we can write x =

∑N
n=0 xnen for some N ∈ N0.

But then

ρ(x) = ρ

(
N∑
n=0

xnen

)
≤

N∑
n=0
|xn|ρ(en) = ‖x‖ω,

where ω = (ωn)n≥0 is defined by ωn := ρ(en). This shows that ρ is continuous
with respect to {‖ · ‖ω | ω ∈ s′0,+}.

Remark 2.2.28. s0 is Hausdorff but not metrizable.

Proof. That s0 is Hausdorff is trivial. Suppose that s0 is metrizable, so that
there exists a countable subcollection

N= {ω(m) | m ∈ N} ⊆ {‖ · ‖ω | ω ∈ s′0,+}

of seminorms which defines the topology on s0. Define ω ∈ s′0,+ by

ωn = 2n
(

1 + max
i,m≤n

ω
(m)
i

)
We claim that ‖ · ‖ω is not continuous relative to N. If it were, then there
would exist c > 0 and m1, . . . ,mr ∈ N such that ‖ · ‖ω ≤ c

∑r
i=1 ‖ · ‖ω(mi) .

Put m := max{m1, . . . ,mr}, and choose N > m large enough so that

2N > c
m∑
n=0

(ω(m1)
n + · · ·+ ω(mr)

n )

Then for x := (1{n ≤ N})n≥0 ∈ s0, it is clear that

‖x‖ω =
N∑
n=0

ωn

≥ 2N

> c
N∑
n=0

(ω(m1)
n + · · ·+ ω(mr)

n )

= c
(
‖x‖ωm1

+ · · ·+ ‖x‖ωmr
)

This is a contradiction.
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For x ∈ s0, define supp(x) := {n ∈ N0 | xN 6= 0}. If we endow N0 with
the discrete topology, then s0 is precisely the space of compactly supported
functions x : N0 → K.

Proposition 2.2.29. A subset A ⊆ s0 is bounded if and only if

1. there exists N ∈ N0 such that for all x ∈ A, supp(x) ⊆ {0, 1, . . . , N},
and

2. there exists M > 0 such that for all x ∈ A, |xn| ≤M for all n ≥ 0.

Proof. See Homework 6 from 7310.

Proposition 2.2.30. A sequence (x(m))m≥0 in s0 converges to x ∈ s0 if and
only if

1. There exists N ∈ N0 such that for allm ≥ 0, supp(x(m)) ⊆ {0, 1, . . . , N},
and

2. For all n ≥ 0, limm→∞ x
(m)
n = xn.

Proof. See Homework 6 from 7310.

Proposition 2.2.31 (& Definition). For n ≥ 0, define the seminorm ρn on
s′0 by ρn(x) := |xn|, and let τ := τ ({ρn | n ≥ 0}), making s′0 a LCTVS.
Then τ is the product topology on s′0 = KN0.

Proof. Let τ ′ denote the product topology. Since the projections x 7→ xn
are certainly continuous with respect to τ , we have τ ′ ⊆ τ . Conversely, let
n ≥ 0, ε > 0, and x ∈ s′0. Then

Bn,ε(x) := {x′ ∈ s′0 | ρn(x′) < ε}

=
n−1∏
k=0

K × {λ ∈ K | |λ− xn| < ε} ×
∏
k>n

K

∈ τ ′

The collection {Bn,ε(x) | n ∈ N0, ε > 0, x ∈ s′0} forms a sub-basis for τ , so
τ ⊆ τ ′.

Theorem 2.2.32. The map J : (S ′
0)′ → S0 given by J(R) := (R(en))n≥0

is a TVS isomorphism. As before, S ′
0 denotes the strong dual of S0, which

is KN0 with the product topology.
From this, we obtain an explicit duality given by R(y) = 〈y,J(R)〉 for

all R ∈ (S ′
0)′ and y ∈ S ′

0, where 〈·, ·〉 denotes the inner product on `2(N0).
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Proof. First, we show R maps into S0. Let R ∈ (S ′
0)′. Since R is continu-

ous, by our criterion for continuity of linear maps there exists C > 0, N ≥ 0
such that for all y = (yn)n≥0 ∈ S ′

0,

|R(y)| ≤ C(|y0|+ . . .+ |yN |).

It follows that R(en) = 0 for n > N , i.e. J(R) is a sequence with finite
support. Hence, J(R) ∈ S0 for all R ∈ (S ′

0)′.
It follows immediately that J is linear. For instance, for R,S ∈ S ′

0, we
have

J(R+ S) = ((R+ S)(en))n≥0 = (R(en) + S(en))n≥0

= (R(en))n≥0 + (S(en))n≥0 = J(R) + J(S).

To show the explicit duality holds, let y = (yn)n≥0 ∈ S ′
0 and R ∈

(S ′
0)′. We observe that in S ′

0, the sequence of finitely supported sequences
(y0, . . . , yn, 0, 0, 0, . . .) converges to y in S ′

0 as n→∞, since S ′
0 is equipped

with the product topology, i.e. the topology of pointwise convergence, and
this sequence evidently converges pointwise to y. By continuity of R, then

n∑
i=0

yiR(ei) = R ((y0, . . . , yn, 0, 0, 0, . . .))→ R(y) as n→∞.

Hence, R(y) =
∑∞
n=0 ynR(en) = 〈y,J(R)〉.

From this, it follows that J is injective. If J(R) = 0 for some R ∈ (S ′
0)′,

then R(y) = 〈y,J(R)〉 = 0 for all y ∈ S0, and so R = 0.
Next, we show J is surjective. Let x ∈ S0. We define R : (S ′

0)′ → K
by R(y) := 〈y, x〉 =

∑∞
n=0 ynxn. Since x is finitely supported, this is a

finite sum and so R is well-defined. The fact that R is linear is clear.
And R is continuous; if N ≥ 0 is such that supp(x) ⊂ {0, . . . , N}, then
R(y) =

∑N
n=0 ynxn for all y = (yn)n≥0 ∈ S ′

0, and so

|R(y)| ≤
(

max
0≤n≤N

|xn|
)
·
N∑
n=0
|yn|.

Since max0≤n≤N |xn| is a constant independent of y and the maps y 7→ |yn|
are continuous seminorms on S ′

0, then R is continuous by our continuity
criteria. And for all n ≥ 0, we have R(en) = 〈en, x〉 = xn, so J(R) = x.
Hence, J is surjective.

Next, we show J is continuous. Let ω ∈ S ′
0,+ and R ∈ (S ′

0)′. Then
‖J(R)‖ω =

∑∞
n=0 ωn|R(en)| =

∑N
n=0 ωn|R(en)| for some N depending on R,

since J(R) has finite support. Now, for 0 ≤ n ≤ N , let λn ∈ K be of unit
magnitude such that R(en) = λn|R(en)|. Then

‖J(R)‖ω =
N∑
n=0

ωnλ
−1
n R(en) = R

(
N∑
n=0

ωnλ
−1
n en

)
.
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Now let A := {y ∈ S ′
0 : |yn| ≤ ωn ∀n ≥ 0}. By definition, A is bounded

and we have
∑N
n=0 ωnλ

−1
n en ∈ A. Hence, ‖J(R)‖ω ≤ supy∈A |R(y)| = ‖R‖A.

Hence, J is continuous, as ‖ · ‖A is a continuous seminorm on (S ′
0)′.

Finally, we show that J−1 is continuous, completing the proof. Let A be
a bounded set in S ′

0. Then for all n, set ωn := supy∈A |yn|, which is finite
by definition of boundedness and the topology on S ′

0. Then ω := (ωn)n≥0 ∈
S ′

0,+, and so

‖R‖A = sup
y∈A
|R(y)| = sup

y∈A

∣∣∣∣∣
N∑
n=0

R(en)yn

∣∣∣∣∣
≤ sup

y∈A

N∑
n=0
|R(en)| · |yn| ≤

N∑
n=0
|R(en)|ωn = ‖J(R)‖ω.

Since ‖ · ‖ω is a continuous seminorm on S0, this proves the claim.

Corollary 2.2.33. S0 and S ′
0 are (strongly) reflexive.

The following concept was used in the preceding proof, and will be useful
in the future.

Definition 2.2.34. If A ⊂ S ′
0 = KN0 , the envelope of A is

Env(A) :=
(

sup
y∈A
|yn|

)
n≥0
∈ [0,∞]N0 .

If A is bounded, then Env(A) ∈ S ′
0,+.

2.2.3 The local Schwartz-Bruhat Space.

We give a brief overview of the p-adics, which are constructed as follows.
For p ≥ 2 prime, the p-adic absolute value | · |p on Q is defined by |0|p := 0,
and for x ∈ Q�{0}, |x|p := p−a, for the unique a ∈ Z such that x = pa · rs ,
with r ∈ Z, s ∈ Z�{0} both relatively prime to p. Thus, integers with large
factors of the fixed prime p have small p-adic absolute value and integers
with small factors of p have large p-adic absolute value. The field of p-adics,
denoted Qp, is the completion of the metric space Q with respect to the
metric on Q induced by the absolute value | · |p.

Since |x + y|p ≤ max(|x|p, |y|p) for x, y ∈ Qp, it follows that Qp is an
ultrametric space, i.e. |x − z|p ≤ max(|x − y|p, |y − z|p) for x, y, z ∈ Qp, a
condition stronger than the triangle inequality. To see this, it suffices to
show that the above inequality holds for x, y, z ∈ Q, and extend the result
to Qp by taking limits.
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p-adics have nice decmial-like expansions. Each x ∈ Qp can be written
uniquely in the form x =

∑
n∈Z anp

n for an ∈ {0, 1, . . . , p−1}, where an = 0
for all but finitely many n < 0. Conversely, any such sum is convergent in
Qp. For nonzero x expressed in this form, we have |x|p = p−N , where N ∈ Z
is minimal such that aN 6= 0.

The closed unit ball of Qp is denoted Zp, since these are the p-adics whose
decimal expansions only range over integral powers of p. From the decimal
expansion and distance formulas, it follows that Zp is homeomorphic to the
Cantor set, which is compact. Hence, Qp is locally compact, since any point
x in an open ball B will contain a scaled and shifted copy of the closed unit
ball Zp, which will be homeomorphic to Zp and therefore compact.

The following observations are useful, and show that the geometry of Qdp
is quite different from the geometry of Rd.

1. Any point in an open ball B(x, pr) is its center. If y ∈ B(x, pr), then
B(x, pr) = B(y, pr), for any x, y ∈ Qdp and r ∈ Z.

2. Open balls are closed and vice versa.

3. The closed unit ball Zdp contains precisely pdr open balls of radius pr
for r ≥ 0.

There exists a Lebesgue measure mp which is translation invariant and
such that mp(λA) = |λ|p · mp(A) for λ ∈ Qp and A measurable, which
we normalize to be such

∫
Zp 1 dx = 1. One way to construct mp is to use

the existence of a translation-invariant Haar measure on the topological
group (Qp,+). To show that this measure’s translation invariance implies
its scaling property, we observe that Zp contains p disjoint copies of pZp =
{x ∈ Qp : |x|p ≤ p−1}, namely, pZp+r for r ∈ {0, . . . , p−1}. This, p ·mp(p ·
Zp) = mp(Zp), and so mp(p · Zp) = |p| ·mp(Zp) by translation invariance.
By extending this argument, it follows translation invariant is sufficient to
guarantee scaling.

Qdp is a Qp-vector space with product measure ddx. We use the max-norm
on Qdp given by |x|p := max1≤i≤d |xi|p for x = (x1, . . . , xd) ∈ Qdp. With
respect to the metric (x, y) 7→ |x− y|p, the space Qdp is locally compact since
the closed unit ball Zdp is locally compact.

We are ready to define Schwarz-Bruhat space, an analogue of Schwarz-
space over p-adics. Note that in the following definition, K still denotes
“either R or C," not Qp.
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Definition 2.2.35. We say f : Qdp → K is locally constant if and onnly if
for all x ∈ Qdp, there exists r ∈ Z such that f |B(x,pr) is constant. For fixed
r ∈ Z, we say f is locally constant at scale pr, or uniformly locally constant,
if for all x ∈ Qdp, the restriction f |B(x,pr) is constant.

Note that there there exist non-constant, locally constant functions Qp →
K since Qp is disconnected. For instance, the function 1Zp is locally constant
at scale p0. Since Qp is an ultrametric space, it follows that a closed ball of
radius 1 about a point x in Zp or Qp�Zp will be contained in Zp or Qp�Zp,
respectively.

Moreover, every locally constant function f is locally constant at some
scale. From the geometry of Qdp, it follows that every locally constant func-
tion f , there exists r ∈ Z such that f is finite linear combination of indicator
functions of disjoint translations of pr1Zdp

. Since Qdp is an ultrametric space,
it follows that f is locally constant at scale pr.

Definition 2.2.36. The Schwarz-Bruhat space S(Qdp) = S(Qdp,K) is the set
of locally constant, compactly supported functions Qdp → K. We equip S(Qdp)
with the finest locally convex topology, i.e. the topology generated by all
seminorms on S(Qdp).

This is analogous to Schwarz space, with local constancy taking the role
of infinite differentiability, and compact support taking the role of fast decay
at infinity.

For r, s ∈ Z, r ≤ s, we let Sr,s(Qdp) be the set of functions f in S(Qdp) such
that f is locally constant at scale pr and supported in B(0, ps). We have
dimK Sr,s(Qdp) = pd(s−r), since a basis for Sr,s(Qdp) is given by{
1z+p−rZdp

: z = (zi) ∈ Qdp s.t. zi =
s∑

n=r+1
anp
−n for an ∈ {0, . . . , p− 1}

}
.

The closed balls z + p−rZdp form a partition of B(0, ps). By the ultrametric
property of p-adics, this is the unique partition of B(0, ps) into closed balls
of radius p−r, and so the set forms a basis. By definition of S(Qdp), we have
the expression S(Qdp) as the increasing union S(Qdp) =

⋃
N≥0 S−N,N (Qdp).

Theorem 2.2.37. S(Qdp) and S0 are TVS-isomorphic.

Proof. First, we observe that S(Qdp) and S0 both have countable algebraic
bases. We expressed S(Qdp) as the increasing union of finite-dimensional
spaces S−N,N (of increasing dimension). Hence, S(Qdp) has a countably in-
finite algebraic basis. And S0 has the canonical basis ek, k ≥ 0. Hence,
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there is a linear isomorphism T : S(Qdp)→ S0. Since S(Qdp) and S0 are both
equipped with their finest locally convex topologies, all linear maps defined
on these spaces are continuous. Hence, T and T−1 are continuous, and so
T is a TVS-isomorphism.

2.2.4 Duality for S .

We introduce some notation and a definition.

Definition, Notation. 2.2.38. We define S ′ to be the space of sequences
in S ′

0 which grow at most polynomially, or are “of temperate growth." More
precisely,

S ′ :=
{
y ∈ S ′

0 : ∃C > 0,K ∈ N0 s.t. ∀n ≥ 0 , |yn| ≤ C〈n〉k
}
.

We set S+ := S ∩ [0,∞)N0 and S ′
+ := S ′ ∩ [0,∞)N0 .

Definition, Proposition. 2.2.39. For ω ∈ S ′
+, ‖x‖ω :=

∑
n≥0 ωn|xn| is

a continuous seminorm on S . Moreover, {‖ · ‖ω : ω ∈ S ′
+} is a defining

collection of seminorms for S .

Proof. Wemake use of our criteria for continuity of seminorms. Let C > 0 be
such that ωn ≤ C〈n〉k for all n. Then ‖x‖ω ≤ C

∑∞
n=0〈n〉k|xn| = C‖x‖1,k <

∞, and so each ‖ · ‖ω is continuous on S . Conversely, ‖x‖1,k = ‖x‖ω,
for ω ∈ S ′

+ given by ωn := 〈n〉k for all n, and so the definition collection
{‖ · ‖1,k} of seminorms is continuous with respect to the topology induced
by the seminorms ‖ · ‖ω (see Proposition 3.2.14). Hence, the two topologies
coincide.

Theorem 2.2.40. The map J : (S ′)′ → S , R 7→ (R(en))n≥0, is a TVS
isomorphism and one has the explicit duality: ∀ ∈ (S ′)′,∀ y ∈ S ′, R(y) =<
y,J(R) > (=

∑
n=0∞

ynxn with J(R) = x).

Proof. Since R is continuous, ∃ c > 0, ∃ ν(1), ..., ν(p) ∈ S+,∀ y ∈ S ′,

|R(y)| ≤ c(||y||ν(1) + ... + ||y||ν(p)) = ||y||ν with ν = c(ν(1) + ... + ν(p)).
Apply this to y = en = (0, ..., 0, 1

n
, 0, ..., 0).

|R(en)| ≤ ||en||ν = νn =⇒ (R(en))n≥0 ∈ S . Thus, J is well-
defined. Note that linearity is clear. Now we discuss the explicit duality.

Let y ∈ S ′, y ∈ S+, ||y −
N∑
n=0

ynen||ν =
∑
n>N

|yn|νn →
N→∞

0 ∀ ν. Thus,

lim
N→∞

N∑
n=0

ynen = y in S ′ topology.
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R(y) = lim
N→∞

R(
N∑
n=0

ynen) because R is continuous

= lim
N→∞

N∑
n=0

ynR(en)

=
∞∑
n=0

ynR(en)

=< y,J(R) > .

Thus, if J(R) = 0, then R(y) ≡ 0 =⇒ R = 0. Thus, J is one-one.
Let x ∈ S ; define R : S ′ → K by y 7→< y, x >. Let νn := |xn| =⇒ ν =

(νn)n≥0 ∈ S+. We have
∞∑
n=0
|xnyn| =

∞∑
n=0

νn|yn| = ||y||ν < ∞. Thus, R is

well-defined and continuous. |R(y)| ≤ ||y||ν . Thus we have, ∀ n,R(en) =<
en, x >= xn =⇒ J(R) = x. So, surjectivity is proved.

Now we need to show continuity. Let w ∈ S ′
+. ||J(R)||w =

∞∑
n=0

wn|R(en)|.

∀ n, λn ∈ K, |λn| = 1 such thatR(en) = λn|R(en)|. ||J(R)||w = limN→∞
∑N
n=0wnλ

−1
n R(en) =

limN→∞R(
∑N
n=0wnλ

−1
n en).

Let A := {y ∈ S ′ | ∀ n ≥ 0, |yn| ≤ wn}.
||J(R)||w ≤ supy∈A |R(y)|. If ν ∈ S+, y ∈ A then,

||y||ν =
∞∑
n=0

νn|yn| ≤
∞∑
n=0

νnwn = ||w||ν = ||ν||w < ∞. Thus, for all

ν, sup
y∈A
||y||ν <∞ =⇒ A is bounded. Hence, J is continuous.

Let A be bounded set in S ′;R ∈ (S ′)′, so,

||R||A = sup
y∈A
|R(y)|

= sup
y∈A
| < y,J(R) > |

≤ sup
y∈A

∞∑
n=0
|yn||R(en)|

≤ sup
y∈A

Env(A)n|R(en)|

= ||J(R)||w, where wn = Env(A)n
=⇒ ∃ w ∈ S ′

+, ∀ R, ||R||A ≤ ||J(R)||w.

Corollary 2.2.41. S ‘and S ′ are reflexive.

Corollary 2.2.42. Via Sequential Representation Theorem, we have
∀d ≥ 1, S(Rd) and S′(Rd) are reflexive.
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2.2.5 Spaces of Infinite Matrices

Note from now on, we will denote S as s.
For x, y ∈ KN2

0 , let < x, y >:=
∑

(m,n)∈N2
0

xm,nym,n if the sum converges

absolutely.
s0⊗̂s := space of x = (xm,n)0≤m,n<∞ such that ∀m ≥ 0, row (xm,n)n≥0 ∈

s and identically zero except for finitely many m’s.
As a vector space, s0⊗̂s' ⊕m≥0 s.(
s0⊗̂s

)
+

:= matrices in s0⊗̂s with non-negative entries.

s′0⊗̂s′ : space of matrices y = (ym,n,)0≤m,n<∞ ∈ KN2
0 such that ∀ m ≥ 0,

row (ym,n)n≥0 ∈ s′.(
s′0⊗̂s′

)
+

= matrices in s′0⊗̂s′ with non-negative entries.

∀ x, y ∈ KN2
0 , ν ∈ (s0⊗̂s)+, w ∈ (s′0⊗̂s′)+,

||x||w =
∑

(m,n)∈N2
0

wm,n|xm,n|, ||y||ν =
∑

(m,n)∈KN2
0

νm,n|ym,n|.

Note that both belong to [0,∞].

Proposition 2.2.43. 1. s0⊗̂s = {x ∈ KN2
0 |∀w ∈ (s′0⊗̂s′)+, ||x||w <∞}.

2. s′0⊗̂s′ = {y ∈ KN2
0 | ∀ ν ∈ (s0⊗̂s)+, ||y||vu <∞}.

3. || · ||w are semi-norms on s0⊗̂s.

4. || · ||ν are semi-norms on s′0⊗̂s′.

Proof. We skip the routine checks of parts 3 and 4. We will prove 1 and 2
can be proved using similarly.

Note that s0⊗̂s⊂ {x ∈ KN2
0 |∀w ∈ (s′0⊗̂s′)+, ||x||w <∞} clearly.

Now choose an x from RHS and fix an m ≥ 0. Since the sum exists, we
have that for fixed m,

∑
n≥0

wm,n|xm,n| <∞ for all w ∈ (s′0⊗̂s′)+, which shows

that (xm,n)n≥0 ∈ s. If for infinitely many m, rows (xm,n)n≥0 are non-zero,
then choosing a w ∈ (s′0⊗̂s′)+ by inverting absolute value of first non-zero
element in rows of x and putting zeros elsewhere in the rows, gives us an
infinite sum of 1’s which is a contradiction.

Topology on s0⊗̂s := τ
(
{|| · ||w, w ∈ (s′0⊗̂s′)+}

)
.

Topology on s′0⊗̂s′ := τ
(
{|| · ||ν , ν ∈ (s0⊗̂s)+}

)
.

(em,n)(m,n)∈N2
0
form the canonical basis, where em,n is the infinite matrix

with 1 at (m,n)th position and 0 elsewhere.
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Theorem 2.2.44. The map J : (s0⊗̂s)′ → s′0⊗̂s′, L 7→
(
L(em,n)

)
0≤m,n<∞

is a TVS isomorphism. (∀ L,∀ x, L(x) =< J(L), x >).

Proof. If L ∈ (s0⊗̂s)′, due to continuity, ∃C > 0,∃w(1), ..., w(p) ∈ (s′0⊗̂s′)+

(w(i) = (w(i)
m,n)0≤m,n<∞), such that ∀ x ∈ s0⊗̂s,

|L(x)| ≤ C(
p∑
j=1
||x||w(j) ≤ ||x||w where w = C(w(1) + ...+ w(p)).

Thus, ∀ (m,n), |L(em,n)| ≤ ||em,n||w = wm,n. Hence, (L(em,n))0≤m,n<∞ ∈
s′0⊗̂s′ showing that J is well-defined.

Linearity is clear.
Explicit Duality: If x ∈ s0⊗̂s, w ∈ (s′0⊗̂s′)+, then ∀ w,

||x−
∑

0≤m≤M,0≤n≤N
xm,nem,n||w =

∑
m≥M,n≥N

wm,n|xm,n| →
M,N→∞

0

because ||x||w <∞.
Since, L is continuous, we have

L(x) = lim
M→∞,N→∞

L(
∑

0≤m≤M,0≤n≤N
xm,nem,n)

= lim
M→∞,N→∞

∑
0≤m≤M,0≤n≤N

xm,nL(em,n)

=
∑

0≤m,n<∞
xm,nL(em,n)

=< J(L), x >

Injectivity: J= 0 =⇒ ∀ x ∈ s0⊗̂s, < J(L), x >= 0 =⇒ L(x) = 0 =⇒
L = 0.

Surjectivity: If y ∈ s′0⊗̂s′, Let wm,n := |ym,n| =⇒ w − (wm,n)(m,n)∈N2
0
∈

(s′0⊗̂s′)+. Now for x ∈ s0⊗̂s, let a linear form L be defined as follows:
L(x) :=< y, x >=

∑
(m,n)∈N2

0
ym,nxm,n. Hence,

|L(x)| = |
∑

(m,n)∈N2
0

ym,nxm,n|

≤
∑

(m,n)∈N2
0

|ym,n||xm,n|

=
∑

(m,n)∈N2
0

wm,n|xm,n|

= ||x||w
<∞
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Note that |L(x)| ≤ ||x||w =⇒ L is continuous linear form. Also, ∀ (m,n),
L(em,n) =< y, em,n >= ym,n. J(L) = (L(em,n))0≤m,n<∞ = (ym,n)0≤m,n<∞ =
y =⇒ J is surjective.

J is continuous: Let ν ∈ (s0⊗̂s)+, L ∈ (s0⊗̂s)′,
||J(L)||ν =

∑
(m,n)∈N2

0

νm,n|L(em,n)|.

∀ (m,n),∃λm,n ∈ K\{0}, |λm,n| = 1, such that L(em,n) = λm,n|L(em,n)|.

||J(L)||ν = lim
M→∞,N→∞

∑
0≤m≤M,0≤n≤N

m,nλ
−1
m,nL(em,n)

= lim
M→∞,N→∞

L(
∑

0≤m≤M,0≤n≤N
m,nλ

−1
m,nem,n)

Let A := {x ∈ s0⊗̂s | ∀(m,n), |xm,n| ≤ νm,n}.
Note that 0 ≤ Env(A) ≤ ν =⇒ Env(A) ∈ (s0⊗̂s)+ =⇒ A is bounded

in s′0⊗̂s.
||J(L)||ν ≤ sup

x∈A
|L(x)| = ||L||A <∞. This shows J is continuous.

J−1 is continuous: Let A be a bounded set in s0⊗̂s, L ∈ (s0⊗̂s)′.

||L||A = sup
x∈A
|L(x)|

= sup
x∈A
| < J(L), x > |

≤ sup
x∈A

∑
(m,n)∈N2

0

|L(em,n)||xm,n|

≤
∑

(m,n)∈N2
0

|L(em,n|νm,n where ν = Env(A)

= ||J(L)||ν

which implies the required continuity.

Proceeding in the exact same manner, we get the following result:

Theorem 2.2.45. The map I : (s′0⊗̂s′)′ → s′0⊗̂s′, R 7→ (R(em,n))0≤m,n<∞
is a TVS isomorphism. (∀R,∀y,R(y) =< y,I(R) >).

2.2.6 Adelic Schwartz-Bruhat space:

We look at the adeles AQ = R ×
∏′
p prime Qp. Its elements are of the form

x = (x∞, x2, x3, x5, ....) such that xp ∈ Zp for all but finitely many p’s.
f : AQ → K is called an elementary function if it has the form

f(x) = f∞(x∞)f2(x2)f3(x3)...

such that
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• f∞ ∈ S(R)

• ∀p, fp ∈ S(Qp)

• fp(x) = 1{x ∈ Zp} except for finitely many p’s

Let S(AQ := finite K-linear combinations of elementary functions.
We quote a result without proof which connects this space to the space

in the previous section.

Theorem 2.2.46.
S(AQ) ' s0⊗̂s

as vector spaces.

2.2.7 The space D of test function

Let U be a nonempty open set in Rd (d ≥ 1). Define

D(U,K) := {f : U → K | f ∈ C∞ & ∃ compact K ⊂ U s.t. f |U\K ≡ 0}

In other words, if

C∞(U,K) := {f ∈ D(U) | supp(f) ⊂ K}

then

C∞(U) =
⋃

compact K⊂U
C∞(U,K).

For fixed k, α ∈ Nd
0 and f ∈ D(U), define the norm

‖f‖K,α := sup
x∈K
|∂αf(x)| <∞

The topology on C∞(U,K) is the LCTVS structure given by

τ({‖ · ‖K,α | α ∈ Nd
0}).

Clearly, C∞(U,K) is metrizable and C∞(U, ∅) = {0}.

Definition 2.2.47. A seminorm ρ on D(U) is called admissible if ρ|C∞(U,K)
is continuous with respect to τ({‖ · ‖K,α}) for any compact K ⊂ U . The
standard LCTVS structure on D(U) is given by

τ({ρ ∈Nall(D(U)) | ρ is admissible})
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Theorem 2.2.48 (Valdivia-Vogt 1978).

D(U) ∼=
TV S

s0⊗̂s

Proof. See the article by Bargetz 2015 (Project 6).

Definition 2.2.49. Let V be a LCTVS. A Schauder basis in V is a sequence
{en}n≥0 such that for any x ∈ V there exists a unique {xn}n≥0 ∈ KN0 for
which

lim
N→∞

N∑
n=0

xnen = x

and such that for all n the map given by x 7→ xn is in V ′ (the dual of V ).
For example, {en = (0, . . . , 0, 1, 0, . . .)}n≥1 is a Schauder basis in `2(N).

Grothendieck’s Conjecture:

s⊗ s′ ∼= {smooth functions growing at most polynomially}

was proved by Valdivia in 1980s.
For x ∈ KN2

0 and the norm ‖ · ‖ω =
∑
ωm,n|xm,n| where αm ≥ 0 and

βn ≥ 0 such that ωm,n ≤ αmβn for some α ∈ s′+ and β ∈ s+.

Horwáth Seminorm: Suppose {θα : U → [0,∞)}α∈Nd0
be a family of

continuous functions. It is called locally finite family if for any x ∈ U there
exists open subset x ∈ V ⊂ U such that

{α ∈ Nd
0 | ∃y ∈ V, θα(y) 6= 0}

is finite.

Theorem 2.2.50. Let Θ be the set of all locally finite family θ = {θα}α∈Nd0
.

For θ ∈ Θ and f ∈ D(U), let

‖f‖θ := sup
α∈Nd0

sup
x∈U

θα(x)|∂αf(x)|

Then, ‖·‖θ is a continuous seminorm on D(U), called a Horwáth seminorm.

Proof. Well-defined: For any f ∈ D(U) there exists nonempty compact
subset K ⊂ U such that supp(f) ⊂ K. For any open subset V ⊂ U let

FV := {α ∈ Nd
0 | θα 6≡ 0 on V } and G =

{
V ⊂

open
U
∣∣ FV is finite

}
Then θ is locally finite implies U =

⋃
V ∈G V . So K has a finite cover

{V1, . . . , Vm} ⊂ G. Let F := ∪mi=1FVi which is finite, then

‖f‖θ = sup
α∈Nd0

sup
x∈K

θα(x)|∂αf(x)| = max
α∈F

sup
x∈K

θα(x)|∂αf(x)| <∞
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Continuous: It’s equivalent to show ‖ · ‖θ ≤ c(ρ1 + . . . + ρn) for some
c > 0 and admissible seminorms ρ1, . . . , ρn. In fact we will see that ρ = ‖·‖θ
is admissible. For any f ∈ C∞(U,K) choose F as above, then

‖f‖θ ≤
(

max
α∈F

sup
x∈K

θα(x)
)

max
α∈F
‖f‖K,α ≤ C

∑
α∈F
‖f‖K,α

where C only depends on θ and K. So ‖ · ‖θ
∣∣
C∞(U,K) is continuous with

respect to τ({‖ · ‖K,α}) for any compact K ⊂ U , i.e. ‖ · ‖θ is admissible.

Theorem 2.2.51. The Horwáth seminorms {‖·‖θ : θ ∈ Θ} form a defining
collection for D(U).

Proof. We have already shown the topology generated by the Horwáth semi-
norms is contained in the topology of admissible seminorms. It remains to
show containment in the other direction holds as well.

Fix an admissible seminorm ρ on D(U). It suffices to show there exists
locally finite family θ such that ρ ≤ ‖ · ‖θ. For U open, there exists an
exhausting sequence of compacts in U

∅ 6= K1 ⊂ K̊2 ⊂ K̊3 ⊂ · · ·

such that U = ∪N≥1KN = ∪N≥1K̊N . For notation purposes, we’ll set
K0 = ∅ (and K̊0 = ∅).

By the Smooth Urysohn lemma, for each N ≥ 1, there exists a C∞

function gN : Rd → R such that gN ≡ 1 when restricted to KN and
Supp gN ⊂ K̊N+1 with values in [0, 1]. This implies the increasing sequence
of functions

0 ≤ g1 ≤ g2 ≤ g3 ≤ · · · ≤ 1.

For notation purposes, set g0 ≡ 0 and g−1 ≡ 0.
Observe that KN+1\K̊N−1 is compact and in U for all N ≥ 1. It follows

that ρ admissible implies ρ restricted to C∞(U,KN+1\K̊N−1) is a continuous
seminorm, i.e., for each N ≥ 1, there exists CN > 0, LN ∈ N0 such that for
all f ∈ C∞(U,KN+1\K̊N−1),

ρ(f) ≤ CN
∑

α,|α|≤LN

‖f‖KN+1\K̊N−1,α
.

Fix f ∈ D(U). Since ∪M≥1K̊M is an open covering of U , and the support
of f is compact in U , there exists M ≥ 1 such that Supp f ⊂ K̊M ⊂ KM .
Since gM is identically 1 on KM , it follows that f = f ·gM on U . In addition,
we can write f as the telescopic sum

f = f ·
M∑
N=1

hN where hN := gN − gN−1.
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Observe that if x ∈ KN+2\K̊N+1, then gN−1(x) = gN (x) = 0 so hN (x) = 0.
In addition, if x ∈ K̊N−1, gN (x) = gN−1(x) = 1 so hN (x) = 0. Hence the
support of hN is contained in KN+1\K̊N−1. Using that ρ is a seminorm,

ρ(f) ≤
M∑
N=1

ρ(fhN )

and so we can write

ρ(f) ≤
M∑
N=1

CN
∑
‖fhN‖KN+1\K̊N−1,α

=
M∑
N=1

CN
∑

α,|α|≤LN

sup
x∈KN+1\K̊N−1

|∂αfhN (x)|

≤
M∑
N=1

(
LN + d

d

)
CN sup

α,|α|≤LN
sup

x∈KN+1\K̊N−1

|∂αfhN (x)|

where LN + d choose d is equal to
∑
|α|≤LN 1. By Leibnitz Rule,

∂α(fhN ) =
∑

β,γ∈Nd0

1{β + γ = α} α!
β! γ! ∂

β(f) · ∂γ(hN )

but note that

∑
β,γ∈Nd0

1{β + γ = α} α!
β! γ! =

d∏
i=1

 ∑
βi,γi∈Nd0

1{βi + γi = αi}
(
αi
βi

)

=
d∏
i=1

2αi = 2|α|.

Therefore we have the bound

ρ(f) ≤
M∑
N=1

(
LN + d

d

)
CN2LN×

×

 sup
|β|≤LN

sup
KN+1\K̊N−1

|∂βf(x)|

 sup
|γ|≤LN

sup
KN+1\K̊N−1

|∂γhN (x)|


i.e.,

ρ(f) ≤
M∑
N=1

2−NBN × sup
|β|≤LN

sup
x∈KN+1\K̊N−1

|∂βf(x)|
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where

BN := 2N+LNCN

(
LN + d

d

)
× sup
|γ|≤LN

sup
x∈KN+1\K̊N−1

|∂γhN (x)|

(notice BN doesn’t depend on f). This shows that for any f ∈ D(U),

ρ(f) ≤ sup
N≥1

sup
|β|≤LN

sup
x∈KN+1\K̊N−1

BN |∂βf(x)|.

For any α ∈ Nd
0, x ∈ U , let

θα(x) :=
∑
N≥1

BN1{|α| ≤ LN} × (gN+1(x)− gN−2(x)).

We need to show that

1. θα is well-defined

2. θ is a locally finite collection of continuous functions on U

3. ρ ≤ ‖ · ‖θ
Well-Defined. Recall U = ∪M≥1K̊M . If x ∈ K̊M ⊂ KM , then for any

N ≥ M + 2, gN−2(x) = 1 = gN+1(x) and so their difference is zero. This
means over K̊M , θα is a finite sum of N

θα =
M+1∑
N=1

BN1{|α| ≤ LN}(gN+1 − gN−2)

so it’s well-defined. Furthermore, by construction of the gN ’s, θα is contin-
uous (even C∞) on U .

Locally Finite Collection. Fix α ∈ Nd
0, and x ∈ K̊M such that

θα(x) 6= 0. It follows that there exists N ∈ {1, ...,M + 1} such that the set
M+1⋃
N=1
{β ∈ Nd

0 : |β| ≤ LN}

is nonempty (contains α) and is finite. So U = ∪K̊M , each of which is open,
and on each K̊M , θα is not identically zero for at most finitely many α’s.
Hence, θ must be a locally finite collection.

Seminorm bound. Observe that for all N ≥ 1, if x ∈ KN+1\K̊N−1,
then gN+1(x) = 0 and gN−2(x) = 0 by support considerations of gN−2.
This implies that if N ≥ 1, |α| ≤ LN , and x ∈ KN+1\K̊N−1, then we have
θα(x) ≥ BN . Therefore

ρ(f) ≤ sup
N≥1

sup
|α|≤LN

sup
x∈KN+1\K̊N−1

BN |∂αf(x)|

≤ sup
α∈Nd0

sup
x∈U

θα(x) ∂αf(x)|
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which is identically ‖f‖θ.
We have found a Horwáth seminorm which controls our given admissible

seminorm. Hence we can conclude that the two topologies are equivalent for
D(U). This completes the proof.

We then get the following corollary.

Corollary 2.2.52. The pointwise product map on D(U){
D(U)× D(U)→ D(U)
(f, g) 7→ fg

is a continuous map.

Proposition 2.2.53. If θ(1), ..., θ(k) are locally finite families on U and
c > 0, then there exists θ such that

c

(
k∑
i=1
‖ · ‖θ(i)

)
≤ ‖ · ‖θ.

Proof. For all α ∈ Nd
0, θα := ck max

1≤i≤k
θ(i) is continuous on U . To see that

it is locally finite, note that if x ∈ U , then for all i there exists a Vi open,
such that x ∈ Vi ⊆ U and only finitely many θ(i)

α are not identically 0 on
Vi. Let V = ∩iVi and Fi = {α : θ

(i)
α |Vi 6= 0}. Then each Fi is finite, and

so is F =
⋃k
i=1 Fi. For α /∈ F , and for all 1 ≤ i ≤ k, θ(i)

α |V = 0. Hence
θα = ck max

1≤i≤k
|θ(i)
α ≡ 0 on V , and so (θα) is locally finite.

Now, we check that the desired inequality holds. Let f ∈ D(U). Then

c
k∑
i=1
‖f‖θ(i) = c

k∑
i=1

sup
α∈Nd0

sup
x∈U

θ(i)
α (x)|∂αf(x)|

≤ c
k∑
i=1

sup
α

sup
x

sup
1≤i≤k

θ(i)
α (x)|∂αf(x)|

≤ sup
α

sup
x
ck sup

1≤i≤k
θ(i)
α (x)|∂αf(x)|

= sup
α

sup
x
θα(x)|∂αf(x)|

= ‖f‖∞.

Corollary 2.2.54. Let ρ be a seminorm on D(U). Then ρ is continuous
iff ∃ θ ∈ Θ such that ρ ≤ ‖ · ‖θ.

The following theorem shows that pointwise multiplication of test func-
tions on D is continuous.
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Theorem 2.2.55. The map D(U)× D(U)→ D(U) sending (f, g) 7→ fg is
continuous.

Proof. We want to show that for all continuous seminorms ρ on D(U) there
exists τ1, τ2 continous seminorms on D(U) such that for all (f, g) ∈ D(U)×
D(U),

ρ(fg) ≤ τ1(f)τ2(g).

By Corollary 2.2.54, there exists a θ such that ρ ≤ ‖ · ‖θ. We will show that
there exists a θ′ such that

‖fg‖θ ≤ ‖f‖θ′‖g‖θ′ ,

and the result will follow.
If α ∈ Nd

0, x ∈ U , then by Leibniz’s Rule

∂α(fg)(x) =
∑

β,γ∈Nd0

1{β + γ = α} α!
β! + γ!∂

βf(x)∂γg(x).

Since 1{β+ γ = α} forces 0 ≤ βi ≤ αi and 0 ≤ γi ≤ αi for all i, we have the
following bound:

‖∂α(fg)(x)| ≤ 2|α|
(

max
β≤α
|∂βf(x)|

)(
max
γ≤α
|∂γg(x)|

)
.

Recall ‖fg‖θ = supα supx θα(x)|∂α(fg)(x)|. Let

θ′β(x) = sup
α≥β

2|α|/2
√
θα(x).

for all β. Then for all α ∈ Nd
0 and all x ∈ U ,

θα(x)|∂α(fg)(x)| ≤ 2|α|θα(x)
(

max
β≤α
|∂βf(x)|

)(
max
γ≤α
|∂γg(x)|

)
=
(

max
β≤α

2|α|/2
√
θα(x)|∂βf(x)|

)(
max
γ≤α

2|α|/2
√
θα(x)|∂γg(x)|

)
≤
(

max
β≤α

θ′β(x)|∂βf(x)|
)(

max
γ≤α

θ′γ(x)|∂γg(x)|
)

≤ ‖f‖θ′‖g‖θ′

Hence ‖fg‖θ ≤ ‖f‖θ′‖g‖θ′ .
Now, we check that θ′ ∈ Θ, i.e. that it is well-defined, continuous

on U , and locally finite. To see that θ′ is continuous, note that for all
α 2|α|/2

√
θα(x) is continuous since θα is continuous and nonnegative. More-

over, since θ is locally finite, for all x ∈ U there exists an open neighborhood
V of x in U and F ⊆ Nd

0 finite so that for all α /∈ F , θα|V ≡ 0. Then

θ′β9x) = sup
α∈F

2|α|/2
√
θα(x) = max

α∈F
2|α|?2

√
θα(x)
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is continuous and well-defined.
To see that θ′ is locally finite, let

F̃ = {β ∈ Nd
0|∃ α ∈ F : β ≤ α} =

⋃
α∈F
{β|0 ≤ β ≤ α}.

Then F̃ is finite as a finite union of finite sets. If β /∈ F̃ , then θ′β|V ≡ 0.
Indeed, θ′β(x) = supα≥β 2|α|/2

√
θα(x), and so if β /∈ F̃ , then all α ≥ β cannot

be in F . Hence θ′β(x) = supα≥β 0 = 0.

We are now ready to prove that pointwise multiplication of test functions
is continuous.

Theorem 2.2.56. The map S(Rd)× S(R)d)→ S(Rd) given by (f, g) 7→ fg
is continuous as a bilinar map.

Proof. For all α ∈ Nd
0 and k ∈ N0,

‖fg‖α,k = sup
x∈Rd
〈x〉k|∂α(fg)(x)|.

If x ∈ Rd, then

〈x〉k|∂α(fg)(x)| ≤ 〈x〉k2|α|
(

max
β≤α
|∂βf(x)|

)(
max
γ≤α
|∂γg(x)|

)
.

Say 〈x〉k ≤ 〈x〉2dk/2e. Then

‖fg‖α,k ≤ 2|α|
(

max
β≤α
‖f‖β,dk/2e

)(
max
γ≤α
‖g‖γ,dk/2e

)
.

If ρ is a continuous seminorm on S(Rd), then there exists a finite F ⊆ Nd
0×N0

and c > 0 such that
ρ ≤ c

∑
(α,k)∈F

‖ · ‖α,k.

Then

ρ(fg) ≤ c
∑

(α,k)∈F
2|α|

(
max
β≤α
‖f‖β,dk/2e

)(
max
γ≤α
‖g‖γ,dk/2e

)

≤ c|F | max
(α,k)∈F

2|α|
(

max
β≤α
‖f‖β,dk/2e

)(
max
γ≤α
‖g‖γ,dk/2e

)
≤ τ(f)τ(g).

where τ =
√
c|F |

∑
(α,k)∈F

∑
β≤α

2|α|/2‖ · ‖β,dk/2e. Since τ is a finite sum of

defining seminorms, τ is continuous.
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Definition 2.2.57. The space of distributions on U is D ′(U), i.e. the
strong dual of D(U).

Proposition 2.2.58. A ⊆ D(U) is bounded iff

1. there exists K ⊆ U compact such that for all f ∈ A, supp(f) ⊂ K,
and

2. for all α ∈ Nd
0, sup

f∈A
sup
x∈U
|∂αf(x)| <∞.

In other words, A is bounded iff the elements of A are uniformly bounded
and have common compact support.

Proof. (⇒) We need to show that for all θ ∈ Θ, supf∈A ‖f‖θ <∞. Let θ be
given. Since θ is locally finite, for every x ∈ K, we can find a neighborhood
Vx of x so that only finitely many θα are nonzero on Vx. Since K is compact,
we can then find a finite F ⊆ Nd

0 such that θα|K ≡ 0 for all α /∈ F . Since
(1)⇒ |∂αf(x)| = 0 for x /∈ K and since θα is continuous for all α, we have
for any f ∈ A,

‖f‖θ = sup
α∈Nd0

sup
x∈U

θα(x)|∂αf(x)|

= sup
α∈F

sup
x∈U

θα(x)|∂αf(x)|

≤
(

max
α∈F

max
x∈K

θα(x)
)(

sup
α∈F

sup
x∈K
|∂αf(x)|

)
,

where max
α∈F

max
x∈K

θα(x) is constant and sup
α∈F

sup
x∈K
|∂αf(x)| is bounded by (2).

Definition 2.2.59. A set of functions D has common compact support
if there exists a compact K s.t. for every function f ∈ D, the support of f
is contained in K.

Theorem 2.2.60. A ⊂ D(U) is bounded iff both

1. A has common compact support

2. ∀α ∈ Nd
0, sup

f∈A
sup
x∈U
|∂αf(x)| <∞.

Proof. We prove this theorem in three parts:

i “(1) + (2) =⇒ A bounded”
We wish to show that ∀θ ∈ Θ, supf∈A ‖f‖θ <∞, so let θ ∈ Θ. Because
of (1), ∃K,∀f ∈ A,Supp(f) ⊂ K. Because θ is locally finite and K
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is compact, only a finite number of θα’s are nonzero on K. Let F be
that finite set of α’s. We want A to be bounded, so we compute

sup
f∈A
‖f‖θ := sup

f∈A
sup
α∈Nd0

sup
x∈U

θα(x) |∂αf(x)|

= sup
f∈A

sup
α∈F

sup
x∈K

θα(x) |∂αf(x)|

= sup
f∈A

max
α∈F

sup
x∈K

θα(x) |∂αf(x)|

≤
(

sup
f∈A

max
α∈F

sup
x∈K

θα(x)
)(

sup
f∈A

max
α∈F

sup
x∈K

|∂αf(x)|
)

=
(

sup
f∈A

max
α∈F

sup
x∈K

θα(x)
)(

max
α∈F

sup
f∈A

sup
x∈K

|∂αf(x)|
)

where the right group is finite by (2), but the left group needs a bit
more attention. Because the support of θα is contained in K compact
and θα is continuous, then the image θα(K) is compact also and thus
bounded. So sup

x∈K
θα(x) is finite, so max

α∈F
sup
x∈K

θα(x) is finite. Moreover,

θα does not depend on f , so taking the supremum over all f ∈ A
changes nothing. So

∀θ ∈ Θ, sup
f∈A
‖f‖θ <∞

as desired, so that A is bounded.

ii “A bounded =⇒ (2)”
blar

iii “A bounded =⇒ (1)”
We shall prove this by the contrapositive, so we prove “Not (1) =⇒
A not bounded”.
Choose an increasing sequence of compact sets K1 ⊂ K2 ⊂⊂⊂ in U
such that

U =
⋃
N≥1

KN .

“Not (1)”
=⇒ ∀KN ,∃fN ∈ A, Supp(f) 6⊂ KN

=⇒ ∀KN ,∃fN ∈ A, ∃xN 6∈ KN , f(xN ) 6= 0
=⇒ ∀KN ,∃fN ∈ A, ∃xN 6∈ KN , ∃εN , B(xN , εN/2) ∩KN = ∅



2.2. MULTISEQUENCES WITH FAST DECAY 107

and fN is nonzero on that ball.

Let θ be defined by

θα(y) := 1{α = 0}
∑
N≥1

N

|fN (xN )| ψ
( 1
εN

(y − xN )
)
.

so that ψ
(

1
εN

(· − xN )
)
is 0 outside of B(xN , εN/2). In particular, ψ(·)

is 0 on KN . To get our contradiction, we wish to show that ‖ · ‖θ blows
up on A (this would make A unbounded). But before we proceed, we
must verify that θ ∈ Θ.

Lemma 2.2.61. θ ∈ Θ

Proof.

• well-defined:
Let y ∈ U be arbitrary. Then the exhaustive sequence of compact
sets guarantees ∃M s.t. y ∈ KM . For all P > M , ψ

(
1
εP

(y − xP )
)

=
0 because ψ(·) is 0 on KP ⊃ KM 3 y.

The information about y’s location allows us to write θ0 as a finite
sum:

θ0(y) =
∑

1≤N<M

N

|fN (xN )| ψ
( 1
εN

(y − xN )
)

Any finite sum converges, so θ0 is defined.

• nonnegativity:
Each θα is either 0 or the sum of products of N , 1

|fN (xN )| , and
ψ(·), each of which are nonnegative, so every θα has nonnegative
range.

• continuity:
(Is more justification needed? Continuous wrt what?) Each θα is
the sum and product of continuous functions, hence continuous
itself (in fact C∞).

• locally finite:
θ0 is the only θα that is nonzero.

We continue with the main proof, trying to show that ‖ · ‖θ blows up
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on A. For any fN ,

‖fN‖θ = sup
α∈Nd0

sup
y∈U

θα(y) |∂αfN (y)|

≥ θ0(xN )
∣∣∣∂0fN (xN )

∣∣∣
= θ0(xN ) |fN (xN )|
= |fN (xN )| θ0(xN )

= |fN (xN )|
∑
M≥1

M

|fM (xM )| ψ
( 1
εM

(xM − xN )
)

≥ |fN (xN )| N

|fN (xN )| ψ(0) (only the M = N summand)

= N.

Finally, we can show

sup
f∈A
‖f‖θ ≥ sup

N≥1
‖fN‖θ ≥ sup

N≥1
N =∞

which implies that A is unbounded. This contradicts the hypothesis
that A is bounded!  

2.2.8 Recap + Outlook

Metrizability

The following spaces are metrizable:

s′0
∼= S(Qdp),s∼= S(Rd)

The following spaces are not metrizable:

s0 ∼= S(Qdp),s′ ∼= S′(Rd),s0⊗̂s∼= S(AQ) ∼= D(U),s′0⊗̂s′ ∼= S′(AQ) ∼= D′(U)

(Note: We have not yet proven that S(Rd) ∼= s, but we will!)

Other generalizations of distributions

• (M, g) is a compact Riemmanian manifold, M ∼= (R/Z)d, and g is a
section. T ∗M⊗ T ∗M is the symmetric part. S(Rd) = D(M) is
metrizable.
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• Currents (de Rhan):
k is a differentiable form on Rd. We have

∑
1≤i1≤≤≤ik≤d fi1,,,ikdxi1 ∧

∧∧ dxik . To generalize this theory, let the f ’s be distributions instead
of currents. z → δdz . U → D′(U).

• Distributions on Abelian locally compact groups (Bruhat):
S′(Qdp) generalizes to S′(AQ).

• Lie groups that are noncompact (see “Langlands program” or “Tate’s
thesis”) (Harish-Chandra):
GLn(R) generalizes to S′(GLn(AQ)).

2.3 Basic properties of distributions

2.3.1 The mother of all distributions

The mother of all distributions is the constant function 1, also known as the
Lebesque measure!

Proposition 2.3.1. If U 6= ∅ is an open set in Rd, then the map{
D(U) → K

f 7→
∫
U f(x) ddx

is in D′(U).

Proof. Here we prove that the seminorm ρ(f) :=
∣∣∣∫U f(x) ddx

∣∣∣ is continuous
with respect to Θ. (There may be something more to show in order to prove
the proposition).

It is sufficient to find a θ ∈ Θ s.t. ρ is continuous with respect to ‖ · ‖θ.
Define ‖ · ‖θ by choosing θα(x) := 1{α = 0} 〈x〉d+1. The θα’s we just chose
are nonnegative, continuous, and locally finite, so θ ∈ Θ indeed. For all
f ∈ D(U),

ρ(f) =
∣∣∣∣∫
U
f(x) ddx

∣∣∣∣
≤
∫
U
〈x〉−d−1〈x〉d+1 |f(x)| ddx

≤
(∫

Rd
〈x〉−d−1 ddx

)
sup
x∈U
〈x〉d+1 |f(x)|

=:
(∫

Rd
〈x〉−d−1 ddx

)
‖f‖θ .

The left parenthesized group is finite, so ρ is continuous with respect to ‖ · ‖θ
as desired.
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Proposition 2.3.2. There is a canonical continuous injective map

D(U) ↪→ D′(U)

ϕ 7→
(
f 7→

∫
U
ϕ(x)f(x) ddx

)
=: Lϕ.

(This allows us to identify D(U) with a linear subspace of D′(U).)

Proof. (It looks like we show continuity in this proof, but not injectivity.
Injectivity still needs to be shown.) Consider

D(U) → D(U) → K
f 7→ ϕ ◦ f 7→

∫
U ϕ ◦ f

where Lϕ is the composition of both arrows.
Let A ∈ D(U) be bounded.

‖Lϕ‖A = sup
f∈A

∣∣∣∣∫ ϕ ◦ f
∣∣∣∣

≤ sup
f∈A

(∫
Rd
〈x〉−d−1 ddx

)
‖ϕ ◦ f‖θ

=
(∫

Rd
〈x〉−d−1 ddx

)
sup
f∈A
‖ϕ ◦ f‖θ ,

where the second line is the result of reusing the inequality we had for f
in the previous proof on ϕ ◦ f . We know there exists a θ′ ∈ Θ such that
‖ϕ ◦ f‖θ ≤ ‖f‖θ′ ‖ϕ‖θ′ , so

‖Lϕ‖A ≤
(∫

Rd
〈x〉−d−1 ddx

)
sup
f∈A

(‖f‖θ′ ‖ϕ‖θ′)

≤
(∫

Rd
〈x〉−d−1 ddx

)(
sup
f∈A
‖f‖θ′

)(
sup
f∈A
‖ϕ‖θ′

)

=
(∫

Rd
〈x〉−d−1 ddx

)(
sup
f∈A
‖f‖θ′

)
‖ϕ‖θ′ .

We know that
(∫

Rd〈x〉−d−1 ddx
)
is finite as shown in the previous proof, and

A bounded implies common compact support of the f ’s implies supf∈A ‖f‖θ′
is finite. We have shown ‖Lϕ‖A ≤ c ‖ϕ‖θ′ for some finite number c, so for
any A ∈ D(U) bounded, ‖ · ‖A is continuous with respect to ‖ · ‖θ′ , and
hence with respect to Θ.

We have already shown that the following map is both injective and
continuous:

D(U) ↪→ D(U)′
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φ 7→ (f 7→
∫
U
φ(x)f(x)ddx) := Lφ.

This map has a dense image (which we take for granted). This density
justifies the intuition that any distribution can be seen as

f 7→
∫
φf

even if φ doesn’t exist as an honest function “φ(x) : ” i.e., for all φ ∈ D′,
(DIFFERENT φ THAN ABOVE) ∃(φN )N≥1 in D such that LφN → φ in
topology of D′, so for all A bounded in D,

||LφN − φ||A → 0

or
sup
f∈A
|
∫
φNf − φ(f)| → 0.

Theorem 2.3.3. There is a canonical continuous injective map

S(Rd) ↪→ S′(Rd)

φ 7→ (f 7→
∫

Rd
φf)

which allows identification of S as a subset of S′.

Remark: we’ve established the following chain of inclusions:

D(Rd) ↪→ S(Rd) ↪→ L2(Rd) ↪→ S′(Rd) ↪→ D′(Rd)

Generic example: Recall a Borel measure µ ≥ 0 on U ⊂ Rd is called Radon
if it’s finite on compact sets. A family (µi)i∈I of Radon measures is called
locally finite if and only if for all compact subsets K of U , µi(K) = 0 except
for at most finitely many i’s.

Theorem 2.3.4. Let (µ+
α )α∈Nd0

and (µ−α )α∈Nd0
be two locally finite families

of Radon measures on U . Then the map

φ : D(U,R)→ R

f 7→ φ(f) =
∑
α∈Nd0

( ∫
U
∂αf dµ+

α −
∫
U
∂αf dµ−α

)
is well-defined and φ ∈ D′(U,R).

Proof.
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• well-defined:
Let f ∈ D(U,R) be arbitrary. Then f ∈ C∞(K,R) for some compact
K. Then

∃F finite ⊂ Nd
0 such that α /∈ F ⇒ µ±α (K) = 0

⇒ φ(f) =
∑
α∈F

( ∫
K
∂αfdµ+

α −
∫
K
∂αfdµ−α

)
where φ is well-defined and linear.

• continuous:
By theorem 3.1.21, we need only find a seminorm | · | on R and a
seminorm ‖ · ‖ on U s.t. |φ(f)| ≤ c ‖f‖ for all f .
If f ∈ C∞(K,R), then

| · |φ(f) ≤
∑
α∈F

(
µ+
α (K) + µ−α (K)

)
||f ||k,α

where ||f ||k,α := supx∈K |δαf(x)|.

Now we recall the Dirac δ functions: for z ∈ U , δdz ∈ D(U)′ by definition,

δdz (f) := 〈δdz , f〉 = 〈δdz (x), f(x)〉 =
∫
U
δd(z − x)f(x)ddx

which is a spike at f(z). For our particular case:

µ−α ≡ 0,∀α

µ+
α ≡ 0, α 6= 0

µ+
0 = unit point mass at z

∀B Borel ⊂ U, µ+
0 (B) = 1{z ∈ B}

defines a map
U ↪→ D′(U)

z 7→ δdz .

This map is continuous. Furthermore consider

d

dt
δdz+t|t=0 := lim

t→0+

1
t
(δdz+t − δdz ) = ψ − ∂if(z)

in the topology of D′.
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Definition 2.3.5. A Borel measure f : U → K is called locally integrable if
and only if for all x ∈ U , there exists V ⊂ U a neighborhood of x such that∫
V |f | <∞. We call L1,loc(U) the space of locally integrable functions on U
modulo f ∼ g if and only if f = g Lebesgue almost everywhere.

Note that
L1,loc(U) ↪→ D′(U)

f 7→ (f 7→
∫
U
φf)

all µ±α ≡ 0, dµ±0 (x) = φ±(x)ddx.

Proposition 2.3.6. For a sequence (fn)n≥1, f ∈ D, we have fn → f in
D(U) if and only if we satisfy the following:

1. The set {f} ∪ {fn | n ≥ 1} has common compact support.

2. ∀α, ∂αfn → ∂αf uniformly in U .

Proof. Sketch: if fn → f , then A := {f} ∪ {fn}n≥1 is bounded by the
single semi-norm criterion and the definition of convergence of sequences
for ρ implies |ρ(fn)− ρ(f)| → 0 which implies boundedness and therefore
common compact support.

Proposition 2.3.7. If φ : D(U)→ K is a linear form, then φ is continuous,
i.e. φ ∈ D′ if and only if for all compact K ⊂ U , ∀f and (fn)n≥1 with
support in K such that ∀α, ∂αfn → ∂αf uniformly, we have φ(fn)→ φ(f).

Proof. Sketch: the forward implication is immediate. For the other direc-
tion, we consider that ρ(f) = φ(f)| is a semi-norm. We can verify that ρ
is continuous. Then we can verify that ρ|C∞(K,R) is continuous using the
statement of the proposition and the fact that U is metrizable. Then we
can apply the sequential characterization of the continuity of linear forms
to obtain our needed result.

2.3.2 Multiplication of Test Functions and Distributions

Remark. Everything that follows has analogues for S and S′.

Suppose that ϕ(x) is a distribution and f(x) is a test function. We would
like to define the product distribution fϕ, but it is not immediately clear
how this should be defined because ϕ is not a function, per se. Assuming
for the moment that ϕ is a function, we get

〈fϕ, g〉 =
∫
U

(f(x)ϕ(x))g(x) ddx =
∫
U
ϕ(x)(f(x)g(x)) = 〈φ, fg〉

The term on the right-hand side makes sense for any distribution ϕ, and we
take it to define fϕ.
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Definition 2.3.8. Let f ∈ D, ϕ ∈ D′. We define the pointwise product
fϕ to be the distribution given by

〈fϕ, g〉 := 〈ϕ, fg〉

Note that fϕ : D→ K is continuous because it can be written as a composite
of continuous functions

D
mf↔ D

ϕ↔ K

where mf is multiplication by f .

Remarks.

(i) The multiplication above makes D′ into a D-module.

(ii) The bilinear map D×D′ → D′ given by (f, ϕ) 7→ fϕ is not continuous.
It is, however, hypocontinuous, i.e., continuous on bounded sets.

(iii) The product (f, ϕ) 7→ fϕ extends the pointwise product of functions:
if ϕ ∈ D ↪→ D′, then the distribution determined by the pointwise
product fϕ ∈ D is precisely the distribution fϕ ∈ D′ that we have
just defined.

2.3.3 Derivatives

For ϕ ∈ D′, we again wish to define a notion of for ϕ. Following the same
line of reasoning as before, we assume for the moment that ϕ is a function:

〈∂iϕ, f〉 =
∫
∂iϕ(x)f(x) ddx

=
∫
U
∂i(ϕf)(x) ddx −

∫
U
ϕ(x)∂if(x) ddx

= −
∫
U
ϕ(x)∂if(x) ddx

= 〈ϕ,−∂if〉 (∗)

Thus we define 〈∂iϕ, f〉 := 〈ϕ, ∂if〉. In the above computation, we used that∫
U ∂i(ϕf)(x) ddx = 0 when ϕ, f ∈ D. This will be justified shortly.

Definition 2.3.9 (& Proposition). For ϕ ∈ D′, the derivative ∂iϕ ∈ D′ is
defined to be the linear form f 7→ 〈ϕ,−∂if〉.

Proof. We need to show that ∂iϕ : D→ D is continuous. Let θ ∈ Θ be a
Horwath seminorm. We have

‖∂if‖θ = sup
α

sup
x
θα(x)|∂ei+αf | = ‖f‖θ′
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where

θ′β :=
{
θβ−ei , βi ≥ 1
0, βi = 0

One sees immediately that θ′ is locally finite (because θ is) and each θ′β is
continuous (because the corresponding θα is), so we are done.

Remark. By induction on |α| ≥ 0, we see that for each α ∈ Nd
0, the map

∂α : D→ K given by

〈∂αϕ, f〉 := (−1)|α|〈ϕ, ∂αf〉

is in D′.

Example 2.3.10. The Heaviside function ϕ(x) = 1x ≥ 0 defines the map

f 7−→ 〈ϕ, f〉 =
∫

R
ϕ(x)f(x) dx =

∫ ∞
0

f(x) dx

Notice that ϕ is not differentiable as an ordinary function, but it is differ-
entiable as a distribution:

〈ϕ′, f〉 = −〈ϕ, f ′〉 = −
∫ ∞

0
f ′(x) dx

= f(x)
= 〈δ0, f〉

That is, ϕ′ = δ0.

Proposition 2.3.11. ∂iϕ generalizes the classical derivative of ordinary
functions via the inclusion D ↪→ D′.

Proof. Suppose ϕ ∈ D, and let Lϕ ∈ D′ denote the associated distribution.
We need to show ∂iLϕ = L∂iϕ. By the computation (∗) at the beginning
of this subsection, this is reduced to showing that

∫
U ∂ig(x) ddx = 0 where

g(x) = ϕ(x)f(x). Let g̃ ∈ D(Rd) be the extension of g to Rd by zero. Then,
applying Fubini’s theorem, we have∫

U
∂ig(x) ddx =

∫
Rd
g̃(x) ddx

=
∫

Rd−1

∏
j 6=i

dxj

∫
R
∂ig̃(x) dxi

= 0

because g̃ has compact support.
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2.3.4 Composition With Diffeomorphisms

Let F : U → V be a C∞ diffeomorphism and ϕ ∈ D′(V ). We would like to
define the “composition” ϕ ◦ F ∈ D′(U). We apply the same reasoning as
before:

〈ϕ ◦ F, f〉 =
∫
U
ϕ(F (x))f(x) ddx

=
∫
V
ϕ(y)f(F−1(y)) |Jy(F−1)| ddy

by change of variables.

Definition 2.3.12 (& Proposition). For ϕ ∈ D′(V ), we define the compo-
sition ϕ ◦ F ∈ D′(U) by

〈ϕ ◦ F, f〉 := 〈ϕ, (f ◦ F−1)|J(F−1)|〉

Proof. We need to check that the map D(U)→ D(V ) given by

f 7→ ((ϕ ◦ F )(f) = ϕ((f ◦ F−1)|J(F−1)|)

is continuous. By Proposition 2.3.7, it suffices to show that if fn, f ∈ D(U)
all have support contained in some compact K ⊆ U and ∂αfn → ∂αf
uniformly for all α ∈ Nd

0, then (ϕ ◦ F )(fn) → (ϕ ◦ F )(f). That is, we need
to show that ϕ(gn)→ ϕ(g), where G = F−1 and

gn(y) = |JyG|(fn ◦G), g(y) = |JyG|(f ◦G)

Now ϕ is assumed to be continuous, so again by Proposition 2.3.7, it suffices
to show that gn, g have a common compact support in V and ∂αgn → ∂αg
uniformly for all α ∈ Nd

0. The common compact support is clear, since G is
a differomorphism. Choose K ⊆ V compact such that Supp(gn),Supp(g) ⊆
K. Now |JyG| and any finite number of its derivatives are uniformly bounded
on K, so in view of the product rule, we can assume gn = fn ◦ G and
g = f ◦ G. Write G = (G1, . . . , Gd) for G1, . . . , Gd smooth functions on V .
A more general version of the Faá di Bruno formula says that

∂αy g(y) =
∑

(σ,β)∈B
Cσ,β ∂

σ
xf(G(y))

d∏
i=1

(
∂β

i

y Gi(y)
)kσ,β,i

and

∂αy gn(y) =
∑

(σ,β)∈B
Cσ,β ∂

σ
xfn(G(y))

d∏
i=1

(
∂β

i

y Gi(y)
)kσ,β,i
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for some finite subset B of Nd
0 × (Nd

0)d, kσ,β,i ∈ N0, and Cσ,β ∈ K. Now∏d
i=1

(
∂β

i

y Gi(y)
)kσ,β,i is uniformly bounded on K, and by assumption

∂σxfn(G(y)) −→ ∂σxf(G(y))

uniformly for each σ. It follows that ∂αgn → ∂αg uniformly.
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3

The Fourier Transform

For f : Rd → C, we define its Fourier transform F[f ] = f̂ by

F[f ](ξ) = f̂(ξ) =
∫

Rd
e−iξxf(x) ddx

whenever this integral converges. There is more than one way to interpret f̂ .

First, F̃ defines a linear map F̃ : L1(Rd)→ C(Rd), where C(Rd) is the set
of continuous functions on Rd. Indeed, if f ∈ L1(Rd), then f̂ is a well defined
function of ξ ∈ Rd. By the dominated convergence theorem, f̂(ξn) → f̂(ξ)
whenever ξn → ξ, so f̂ is continuous.

More classically, F defines a bijective linear map S(Rd,C) → S(Rd,C)
with inverse given by the inverse Fourier transform F−1:

F−1[f ](x) = f̌(x) := 1
(2π)d

∫
Rd
eiξxf̂(ξ) dξ

To show this, first, we show our formula f̂ : ξ 7→
∫

Rd e
−ξxf(x) ddx defines

a function into S(Rd,C). First, we verify that the formula which defines f̂
makes sense. For each ξ ∈ Rd, we have

|e−iξxf(x)| = 〈x〉−(d+1)
(
〈x〉d+1|f(x)|

)
≤ ‖f‖0,d+1 · 〈x〉−(d+1).

Since ‖f‖0,d+1 is finite x 7→ 〈x−(d+1) is integrable over Rd, and so x 7→
e−iξxf(x) is an absolutely integrable function on Rd.

Next, we show that f̂ is C∞, that is, ∂αf̂ exists for all α ∈ Nd
0. By

induction on |α|, we will prove that ∂αf̂ exists and is given by the following
formula:

∂αf̂(ξ) =
∫

Rd
(−ix)αe−iξxf(x) ddx.
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(Recall that xα = xα1
1 . . . xαdd for x = (x1, . . . , xd) ∈ Rd and α = (α1, . . . , αd) ∈

Nd
0). This holds by definition for α = 0. At each inductive step, this follows

from an application of “differentiation under the integral sign," e.g. [Fol-
land, Theorem 2.27.] To apply this principle, we need to show that ∂αf̂ is
dominated by an absolutely integrable function. Since | · | ≤ 〈x〉, we have

|(−ix)αe−iξxf(x)| = |xα| · |f(x)|
= |x1|α1 . . . |xd|αd〈x〉|α|

≤ 〈x〉|α||f(x)|

= 〈x〉−(d+1)
(
〈x〉|α|+d+1f(x)

)
≤ ‖f‖0,|α|+d+1 · 〈x〉−(d+1).

Since ‖f‖0,|α|+d+1 is a finite constant and x 7→ 〈x〉−(d+1) is absolutely inte-
grable, this proves the claim.

Next, we show that each f̂ has fast decay. For α, β ∈ Nd
0, by Fubini’s

Theorem we have

ξβ∂αf̂(ξ) =
∫

Rd
e−iξx(−ix)αξβf(x) ddx

= i|β|−|α|
∫

Rd
e−iξx(−iξ)β · xαf(x) ddx

= i|β|−|α|
∫

Rd
∂βx

(
e−iξx

)
· (xαf(x)) ddx

= i|β|−|α
d∏
i=1

∫
R
∂βixi

(
e−iξixi

)
xαii f(x) ddx.

We observe that any term xγif(x) for γi ∈ N0 is such that xγif(x)
∣∣∞
0 =

limx→∞ x
γif(x)− 0 = 0 by the rapid decay of f . Hence, by repeated appli-

cation of integration by parts and Fubini’s Theorem, we have

ξβ∂αf̂(ξ) = i|β|−|α|
d∏
i=1

(−1)βi
∫

R
e−iξixi∂βxi (xαii f(x)) ddx

= i|β|−|α|(−1)|β|
∫

Rd
e−iξx∂βx (xαf(x)) ddx.

By Leibniz’ formula, we have

ξβ∂αf̂(ξ) = (−i)|β|+|α|
∫

Rd
e−iξx

∑
0≤γ≤β

β!
γ!(β − γ)! (∂

γ
xx

α) · (∂β−γx f(x)) ddx.

By repeated differentiation and Fubini’s Theorem, we see that

∂γxx
α = 1{γ ≥ α} · α!

(α− γ)!x
α−γ .
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Hence,

|ξβ∂αf̂(ξ)| ≤
∑
γ∈Nd0

1{γ ≤ α, β} α!β!
γ!(α− γ)!(β − γ)!

∫
Rd
〈x〉|α|−|γ|

∣∣∣∂β−γf(x)
∣∣∣ ddx

≤
∑
γ∈Nd0

1{γ ≤ α, β} α!β!
γ!(α− β)!(β − γ)! · ‖f‖β−γ,|α|−|γ|+d+1 ·

∫
Rd
〈x〉−(d+1) ddx,

which is finite as the sum over γ is finite. This proves that supξ∈Rd |ξβ∂αf̂(ξ)| <
∞ for all α, β ∈ N0, i.e. f̂ ∈ S. We also see that |ξβ f̂(ξ)| ≤ C‖f‖ν,` for
some ν ∈ Nd

0 and ` ≥ 0.

Finally, we show F is continuous. For k ≥ 0 and α ∈ Nd
0, we set m := dk2e.

Since 〈·〉 ≥ 1 and k ≤ 2m, then

‖f̂‖α,k = sup
ξ∈Rd
〈ξ〉k|∂αf̂(ξ)| ≤ ‖f̂‖α,2m.

We have
〈ξ〉2m∂αf̂(ξ) =

(
1 + ξ2

1 + . . .+ ξ2
d

)
∂αf̂(ξ).

We observe that this is a finite linear combination of expressions ξβ∂αf̂(ξ),
for β = 0, (2, 0, . . . , 0), . . . , (0, . . . , 0, 2). We showed that each of these are
expressions bounded above by a constant multiple of a seminorm C‖f‖ν,`.
Hence, ‖f̂‖α,k ≤

∑M
i=0Ci‖f‖νi,`i for some M ≥ 0, νi ∈ Nd

0, `i ≥ 0, Ci > 0.
And so F is continuous.

Remark 3.0.1. In the course of this proof, we showed the following relations
between derivatives of Fourier transforms and multiplications by monomials
xα:

1. ∂αf̂(ξ) = F[x 7→ (−ix)αf(x)] (ξ).

2. By integration by parts,

∂̂αf(ξ) =
∫

Rd
e−iξx∂αf(x) ddx

= (−1)|α|
∫

Rd
(−iξ)αe−iξxf(x) ddx = (iξ)αf̂(ξ)

Example 3.0.2. Let 0 < α < d.

“
∫

Rd
e−iξx

1
|x|α

ddx =
Γ(d−α2 )
Γ(d2)

2d−απ
d
2

1
|ξ|d−α

′′



122 3. THE FOURIER TRANSFORM

Proof. Note that L.H.S. does not make sense as Lebesgue integral as
∫

Rd
|x|−αddx =

∞. But we will work in the language of distributions. Define

φ(x) =


1
|x|α x 6= 0,
0 x = 0

Define the distribution associated to φ, say T , i.e. given f ∈ S′, we have
< T, f > =

∫
Rd
φ(x)f(x)ddx.∫

|φf | =
∫ 1
|x|α

< x >d+1

< x >d+1 |f(x)|ddx ≤ ||f ||0,d+1

∫
Rd

ddx

|x|α < x >d+1 <∞.

Thus T is well-defined and continuous. So, T ∈ S′.
∀f ∈ S′,

< T̂ , f > := < T, f̂ > =
∫

Rd\{0}
ddx

1
|x|α

f̂(x)

=
∫
x6=0

ddx
( 1

Γ(α2

∫ ∞
0

dt

t
t
α
2 e−t|x|

2)
f̂(x)

Fubini= 1
Γ(α2 )

∫ ∞
0

dt

t
t
α
2

∫
Rd\{0}

ddx e−t|x|2 f̂(x) (∗)

For a > 0,

F[ξ → e−aξ
2 ](x) =

∫
Rd
e−ixξe−aξ

2
ddξ

= (2a)−
d
2

∫
e
− η

2
2 −i

x√
2aη ddη, η =

√
2aξ

= (π
a

)
d
2 e−

x2
4a

Take 1
4a = t; e−t|x|2 = F[ξ → (4πt)−

d
2 e−

ξ2
4t ](x)

Substitute into (*) and use Plancherel,

< T, f̂ > = 1
Γ(d2)

∫ ∞
0

dt

t
t
α
2 (2π)d

∫
Rd\{0}

ddξ (4π)−
d
2 e−

ξ2
4t f(ξ)

Fubini= 1
Γ(α2 )

∫
ξ 6=0

ddξ f(ξ)π
d
2

∫ ∞
0

dt

t
t
α−d

2 e−
ξ2
4t

= 1
Γ(α2 )

∫
ξ 6=0

ddξ f(ξ)π
d
2 (ξ

2

4 )
α−d

2

∫ ∞
0

ds

s
s
d−α

2 e−s, s = ξ2

4t

Thus, < T̂ , f > =
Γ(d−α2 )
Γ(α2 ) 2d−α(π)

d
2

∫
ξ 6=0}ddξ 1

|ξ|d−α
f(ξ)

. The last part

does define an element in S′ as d− α < d ⇐⇒ α > 0.
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Remark: This was a particular case of Fourier transform for homoge-
neous distributions φ(x) ∈ S′(Rd)— it is homogeneous of degree γ ∈ R if
and only if ∀λ > 0, “φ(λx) = λγφ(x)′′.

Remark: S′ ⊂ D′. Let φ ∈ S′(Rd, f−−C∞ diffeomorphism of Rd; ingeneralφ◦
f ∈ D′ but not in S′. However, if we have f(x) = λx, then φ ◦ f does lie in
S′.

We quote a theorem without proof.

Theorem 3.0.3. If φ is homogeneous of degree γ, then F[φ] is homogeneous
of degree −γ − d.

Thus, what we proved earlier is a particular case of this.

3.0.1 Convolution

Definition 3.0.4. Let f, g ∈ S(Rd,C). Their convolution is defined as
follows:

(f ∗ g)(x) =
∫

Rd
f(x− y)g(y)ddy.

f is bounded and g ∈ L1, so this definition makes sense. In fact, f∗g ∈ S.

Theorem 3.0.5.

1 . Convolution is a continuous bilinear map from S(Rd,C)×S(Rd,C)→
S(Rd,C).

2 . ∗ is symmetric: f ∗ g = g ∗ f .

3 . ∀ α ∈ Nd
0, ∂α(f ∗ g) = (∂αf) ∗ g + f ∗ (∂αg).

4 . ∀ f, g, F(f ∗ g) = F(f)F(g).

Proof. We will prove the first half of (3) first.
∂αf ∈ L∞, g ∈ L1.
|∂αx [f(x−y)g(y)]| ≤constant ×|g(y)|. Thus derivative can be taken inside

the integral as we have seen in Math 7310. Thus we have f ∗ g is C∞ and
∂α(f ∗ g) =

∫
∂α(f(x− y)g(y)) dy.

Now we show part 2, which when combined with what we just saw, will
give us 3.

f ∗ g(x) =
∫
f(x − y)g(y)ddy =

∫
f(z)g(x − z)ddz = g ∗ f(x) using

z = x− y and the translation invariance of Lebesgue measure.

||f ∗g||α,k = sup
x
< x >k |∂α(f ∗g)(x)| ≤ sup

x

∫
< x >k |∂αf(x−y)||g(y)|ddy

from 3.
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We previously had shown that ∀ u, v ∈ Rd, < u+ v >≤
√

2 < u >< v >.
Applying this in the previous calculation and continuing we have,

≤ 2
k
2 sup

x

∫
< x− y >k |∂αf(x− y)| < y >k |g(y)|ddy

≤ 2
k
2
( ∫

Rd
< y >−d−1 ddy

)
× ||f ||α,k||g||0,k+d+1 <∞

and hence we have continuity.
Finally to see 4, we have

F(f ∗ g) =
∫
e−iξx

( ∫
f(x− y)g(y)ddy

)
ddx

Fubini=
∫ ∫

e−iξ(x−y)f(x− y)e−iξyg(y)ddyddx

=
∫
g(y)e−iξy

(
e−iξ(x−y)f(x− y)ddx

)
ddy

= f̂(ξ)ĝ(ξ)

3.0.2 Poisson Equation Revisited

Let ρ ∈ S. The question was to find out a φ such that −∆φ = ρ. We saw
that in d = 3, we solved φ(x) = 1

4π

∫
R3

1
|x− y|

ρ(y)d3x.

Let’s start a heuristic discussion to handle this case using the tools we
have developed.

“

F[−∆φ] = −
3∑
j=1

∂̂2
jφ(ξ) = −

3∑
j=1

(iξj)2φ̂(ξ) = |ξ|2φ̂(ξ). Thus we should

have from the given Poisson Equation |ξ|2φ̂(ξ) = ρ̂(ξ) which should give us
φ = F−1

[ 1
|ξ|2

ρ̂(ξ)
]
. Now if we have 1

|ξ|2
= ĥ()ξ for some h, then we can

write φ = F−1[F[h ∗ ρ]] = h ∗ ρ i.e. φ(x) =
∫

R3
h(x− y)ρ(y)d3y.

Now the question is whether h(x) = 1
4π|x| works or not.
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ĥ(ξ) = 1
4π

∫
Rd
e−iξx

1
|x|α

ddx

= 1
4π

Γ(d−α2 )
Γ(α2 ) 2d−απ

d
2

1
|ξ|d−α

(from what we have seen)

= 1
4π

Γ(1)
Γ(1

2)
22π

3
2

1
|ξ|2

, (as d = 3, α = 1)

= 1
|ξ|2

”
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4

Sequence Space
Representation

4.1 Completeness of S
Proposition 4.1.1. Let U be an open subset in Rd and {fn}n≥1 ⊂ C1(U).
Suppose there is a function f : U → R such that fn → f pointwise and for
any 1 ≤ i ≤ d, ∂ifn converge locally uniformly to some function gi. Then
f ∈ C1(U) and gi = ∂if for all i.

Proof. Since gi is locally uniform limit of continuous functions, it is also
continuous and for any x ∈ U there exists ε > 0 and B(x, ε) ⊂ U such that

sup
y∈B(x,ε)

|∂ifn(y)− gi(y)| → 0 as n→∞.

Now for |t| < ε, by FTC

fn(x+ tei)− fn(x) = t

∫ 1

0
∂ifn(x+ stei)ds

By taking n→∞ (note that ∂ifn → gi uniformly on B(x, ε))

f(x+ tei)− f(x) = t

∫ 1

0
gi(x+ stei)ds

Then by uniform continuity∣∣∣∣f(x+ tei)− f(x)
t

− gi(x)
∣∣∣∣ =

∣∣∣∣∫ 1

0
[gi(x+ stei)− gi(x)]ds

∣∣∣∣
≤ sup

s∈[0,1]
|gi(x+ stei)− gi(x)| → 0 as n→∞.

So all partial derivatives of f exist and ∂if = gi which are continuous, and
f ∈ C1(U).
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Theorem 4.1.2. Let {fn}n≥1 ⊂ S (Rd) such that for any (α, k) ∈ Nd
0×N0,

{fn} is Cauchy in the norm ‖ · ‖α,k (i.e. ∀ε > 0, ∃N ≥ 0 s.t. ∀m,n ≥ N ,
‖fm − fn‖α,k ≤ ε). Then there exists f ∈ S (Rd) such that fn → f in the
topology of S (Rd).
Proof. It is known that {fn} is Cauchy in ‖ · ‖α,k, in particular for (α, k) =
(0, 0) or (1, 0) this implies {fn} and {∂ifn} converge uniformly and by Propo-
sition 4.1.1,

fn → f ∈ C1(Rd), ∂ifn → ∂if

One can iterate the above procedure and show that f ∈ C∞(Rd) and ∂αfn →
∂αf uniformly for all α. In what follows we will show fn → f in S (Rd): By
the hypothesis, with α, k fixed, for any ε > 0 there exists N such that for
m,n ≥ N and x ∈ Rd

〈x〉k |∂αfm(x)− ∂αfn(x)| ≤ ε

For fixed ε,N,m, x, by taking n→∞ in the above inequality we get

〈x〉k |∂αfm(x)− ∂αf(x)| ≤ ε

Since it holds for all x we proved that for any ε > 0 there is N such that
‖fm − f‖α,k ≤ ε when m ≥ N , and since α, k are arbitrary this means
fn − f → 0 in S (Rd). Finally, f ∈ S (Rd) because for ε = 1 there is N0
such that

‖f‖α,k ≤ ‖fN0‖α,k + ‖fN0 − f‖α,k ≤ ‖fN0‖α,k + 1 <∞

Corollary 4.1.3. S (Rd) is a Fréchet space.
Proof. Let ρ : N → Nd

0 × N0 by n 7→ (αn, kn) =: ρ(n) be a bijection. Then
the sequence of seminorms ‖ · ‖ρ(n) defining the metric

d(f, g) :=
∑
n≥1

2−n min{1, ‖f − g‖ρ(n)}

satisfies the requirement of being Fréchet: Clearly it is a distance (trans-
lation invariant) in S (Rd) which defines a topology τ(d) of S (Rd). And
clearly this is a complete metric space. We only need to show τ(d) =
τ(S (Rd)).

(⊆): For any Bε(f) in τ(d), the multi-ball{
g | ‖f − g‖ρ(1) < ε/2, . . . , ‖f − g‖ρ(n) < ε/2

}
with 2−n < ε/2 is contained in Bε(f).

(⊇): On the other hand, note that

B2−nε(f) ⊂
{
g | ‖f − g‖ρ(1) < ε, . . . , ‖f − g‖ρ(n) < ε

}
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4.1.1 Old and New density results in L2(Rd,R)
Recall that

C0(Rd,K) := {f : Rd → K which are continuous}
C0
c (Rd,K) := {f : Rd → K which are continuous and compactly supported}

and also we have inclusion

D(Rd) ⊂ C0
c (Rd) ⊂ L2(Rd)

D(Rd) ⊂ S (Rd) ⊂ L2(Rd)

Proposition 4.1.4. C0
c (Rd) is dense in L2(Rd).

Proof. Recall in Math 7310 – Hwk8 we showed that C0(Rd)∩L2(Rd) is dense
in L2(Rd). For any f ∈ L2 take g ∈ C0(Rd)∩L2(Rd) such that ‖f−g‖L2 < ε.
Now let

gN (x) = g(x)Φ(x/N), N ≥ 1

where Φ(x) = ϕ3(|x|) which is the bump function defined in section 1.2.
Then gN ∈ C0

c (Rd) and by DCT

‖g − gN‖2L2 =
∫

Rd\B(0,N/2)
g(x)2 (1− Φ(x/N))2 dx→ 0 as n→∞

so we can take large N such that ‖f − gN‖L2 < 2ε.

Proposition 4.1.5. D(Rd) is dense in L2(Rd). (This implies S (Rd) is also
dense in L2(Rd).)

Proof. By Proposition 4.1.4 it suffices to show D(Rd) is dense in C0
c (Rd)

under L2 norm. Let f ∈ C0
c (Rd) and K = supp(f) which is compact. Let

R > 0 be such that K ⊆ B(0, R). Then by Theorem 1.3.13 there exists
{fN} ⊂ D(Rd) such that supp(fN ) ⊂ B(0, R) and

‖f − fN‖∞ → 0

Then

‖f − fN‖2L2 =
∫
B(0,R)

|f(x)− fN (x)|2dx ≤ Vol(B(0, R))‖f − fN‖2∞ → 0

Theorem 4.1.6. Let V be the C-linear span of
{
e−

x2
2 +iξx | ξ ∈ Rd

}
. Then

V is dense in L2(Rd,C).
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Proof. It suffices to show V is dense in D(Rd) under L2 norm. Let f ∈
D(Rd,C). Then g(x) = e

x2
2 f(x) ∈ D ⊂ S . Since Fourier transform is

invertible on S ,

e
x2
2 f(x) = 1

(2π)d
∫

Rd
eiξxĝ(ξ)dξ

so

f(x) = 1
(2π)d

∫
Rd
e−

x2
2 +iξxĝ(ξ)dξ

Let

fM (x) = 1
(2π)d

∫
[−M,M)d

e−
x2
2 +iξxĝ(ξ)dξ

Then

|f(x)− fM (x)| ≤ e−
x2
2

(2π)d
∫

Rd\[−M,M)d
|ĝ(ξ)|dξ

and by DCT

‖f(x)− fM (x)‖2L2 ≤ 2−2d(π)−
3d
2

∫
Rd\[−M,M)d

|ĝ(ξ)|dξ → 0 as M →∞.

Next for N ≥ 1, divide [−M,M)d into (2MN)d cubes of side length N−1

and write

fM (x) = 1
(2π)d

∑
ξ∈[−M,M)d∩(N−1Z)d

∫
ξ+[0,N−1)d

e−
x2
2 +iηxĝ(η)dη

Define

fM,N (x) = 1
(2π)d

∑
ξ∈[−M,M)d∩(N−1Z)d

e−
x2
2 +iξx

∫
ξ+[0,N−1)d

ĝ(η)dη

By definition fM,N ∈ V and

|fM (x)− fM,N (x)| ≤ e−
x2
2

(2π)d
∑

ξ∈[−M,M)d∩(N−1Z)d

∫
ξ+[0,N−1)d

∣∣∣eiηx − eiξx∣∣∣ |ĝ(η)|dη

For u, v ∈ R,

|eiv − eiu| =
∣∣∣∣∫ 1

0
i(v − u)ei(u+t(v−u))dt

∣∣∣∣ ≤ |u− v|
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For η ∈ ξ + [0, N−1)d,

|ηx− ξx| ≤ |x||η − ξ| ≤ |x|
√
d

N

So

|fM (x)− fM,N (x)| ≤ |x|e
−x

2
2

(2π)d

√
d

N

∫
[−M,M)d

|ĝ(η)|dη

Then

‖fM (x)− fM,N (x)‖2L2 ≤
d

N2(2π)d ‖ĝ‖
2
L1

∫
R
x2e−x

2
dx→ 0 as N →∞.

Theorem 4.1.7. Let WK := {e−x2/2p(x) : p(x) ∈ K[x1, ..., xd]} (here x2

understood in sense x2
1+· · ·+x2

d), Then WK is a dense subspace of L2(Rd,K).

Remark 1. The claim of theorem is well posed for WK is clearly con-
tained in Schwartz space S and thus L2(Rd,K).

Remark 2. Notes from Math 7305 have a proof for the d = 1 case (it is
“very ad hoc” method) and it’s possible to extend the proof to d dimensions.
We’ll present an alternative proof which uses methods discussed.

Proof. We’ll prove two cases.

(K = C). Fix function g(x) = e−
x2
2 +iξx. To approximate g in WC, we’ll

expand eiξx for N ∈ N0. Define

gN (x) = e−
x2
2

N∑
i=0

(iξx)n

n! ∈WC.

We easily get the following bound on the difference of g and gN :

|g(x)− gN (x)| ≤ e−
x2
2

∑
n≥N+1

|iξx|n

n! ≤ e−x2/2 ∑
n≥N+1

|ξ|n|x|n

n!

hence
|g(x)− gN (x)|2 ≤ e−x2 ∑

m,n≥N+1

|ξ|m+n|x|m+n

m!n! .

It follows that

‖g(x)− gN (x)‖2L2 ≤
∑

m,n≥N+1

|ξ|m+n

m!n!

∫
Rd
e−x

2 |x|m+n ddx
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which by Cauchy-Schwartz is bounded by

∑
m,n≥N+1

|ξ|m+n

m!n!

(∫
Rd
e−x

2 |x|2mddx
)1/2 (∫

Rd
e−x

2 |x|2nddx
)1/2

.

The right side of the inequality above can be denoted as RN 2 where

RN :=
∑

n≥N+1

|ξ|n

n!

(∫
Rd
e−x

2 |x|2n ddx
)1/2

. (4.1)

It remains to show that RN converges. By use of spherical coordinates,
notice ∫

Rd
e−x

2 |x|2n ddx = Vold−1(Sd−1)×
∫ ∞

0
e−r

2
r2n+d−1dr

= Vold−1(Sd−1)× 1
2

∫ ∞
0

e−s sn+ d
2
ds

s

where last equality is result of change of variables s = r2. Notice the integral
term is identical to the Gamma function evaluated at n+d/2. Putting things
together, we now have∫

Rd
e−x

2 |x|2n ddx = Vold−1(Sd−1)× 1
2Γ
(
n+ d

2

)

It follows that we can approximate line (4.1) by the power series
∞∑
n=0

c an|ξ|n

where

an =

√
Γ
(
n+ d

2

)
n! and c =

√
1
2Vold−1(Sd−1)

Making use of the gamma function property Γ(z + 1) = zΓ(z), we see the
series has an infinite radius of convergence

∣∣∣∣ anan+1

∣∣∣∣ = (n+ 1)

√√√√√ Γ
(
n+ d

2

)
Γ
(
n+ 1 + d

2

) = n+ 1√
n+ d

2

as n→∞−−−−−−→∞

and so all ξ, RN converges.

(K = R). Fix a function f ∈ L2(R2,R) ⊂ L2(R2,C). By our first case,
there exists a complex polynomial PN ∈ C[x1, ..., xd] such that

fN (x) := e−
x2
2 PN (x)→ f

in L2 where fN ∈WC. We may write the polynomial PN in the form

PN (x) =
∑

finite α
CN,α x

α
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where CN , α ∈ C and xα ∈ R. DefineQN (x) to be the real part of polynomial
PN . Then

QN (x) =
∑
α

Re(CN,α) xα ∈ R[x1, ..., xd]

and
Re(fN )(x) = e−

x2
2 QN (x) ∈WR.

From here, the result follows by observing

‖f − Re(fN )‖2L2(Rd,R) = ‖Re(f − fN )‖2L2(Rd,R) ≤ ‖f − fN‖
2
L2(Rd,C)

which goes to zero as N goes to infinity.

4.2 Hermite Polynomials
We’ll only define Hermite polynomials in one dimension setting before mov-
ing on to the multi-dimension definition. See Math 7305 notes for details
on the one dimension Hermite polynomials.
Definition 4.2.1. For n ∈ N0, define the (nth) standard Hermite Polyno-
mial1 as

Hn(x) := (−1)nex2
(
d

dx

)n
e−x

2
. (4.2)

Here is a list of the first six Hermite polynomials

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 38x2 + 12

H5(x) = 32x5 − 160x3 + 120x

From the following proposition (proven in Math 7305 summer class),
Hn(x) is a polynomial of degree n with leading coefficient 2n.

Proposition 4.2.2. For any n ∈ N0, Hn(x) =
bn2 c∑
k=0

(−1)kn!
k!(n− 2k)! (2x)n−2k.

Since we have exactly one Hermite polynomial of degree n, it’s possible
to represent any polynomial over K as a linear sum of Hermite polynomials.
Proposition 4.2.3. {Hn(x)}n≥0 forms a basis for K[x].

Furthermore, Proposition 4.2.2 also shows that the Hermite polynomials
form an orthogonal system in L2(R,K) with respect to weight e−x2 .
Proposition 4.2.4. Let n,m ∈ N0. Then∫

R
Hn(x)Hm(x)e−x2

dx = 2nn!
√
π δn,m.

Proof. Repeated use of integration-by-parts.
1There are many different equivalent formulations of Hermite polynomials.



134 4. SEQUENCE SPACE REPRESENTATION

Multi-Dimensional Hermite Polynomials

The results for Hermite polynomials in one-dimension can be extended to
multi-dimensional Hermite polynomials.

Definition 4.2.5. Let α = (α1, · · · , αd) ∈ Nd
0. Then the d-dimensional α-

Hermite polynomial Hα(x) is the product of the one-dimensional Hermite
polynomials on the components αi. That is,

Hα(x) := Hα1(x1)Hα2(x2) · · ·Hαd(xd). (4.3)

By construction, Hα(x) is separable, i.e., a product of different vari-
able functions. Therefore orthogonality translates to the system of multi-
dimensional Hermite polynomials∫

Rd
Hα(x)Hβ(x)e−x2

dxd = 2|α| α!πd/2 1{α = β}.

In addition, the d-dimensional Hermite polynomials form a basis on the
polynomial ring K[x1, · · · , xd]. However, since Hα(x) are strictly polynomi-
als for all α ∈ Nd

0„ they are not in L2(Rd). The goal is to manipulate the
Hermite polynomials enough such that not only their manipulated counter-
parts are in L2(R), but they also form an orthonormal basis. We will call
this maniuplated function a Hermite function.

4.2.1 Hermite Functions

We’ll first define these Hermite functions in one-dimension.

Definition 4.2.6. Let d = 1 and n ∈ N0. The nth-Hermite function hn(x)
is defined as a re-scaling of the nth Hermite polynomial multiplied by an
exponential

hn(x) = π−1/4 2−n/2 (n!)−1/2 e−x
2/2 Hn(x). (4.4)

By construction, the Hermite functions form an orthonormal system in
L2(R). ∫

R
hn(x)hm(x) dx = π−1/2 2−n(n!)−1

∫
R
Hn(x)Hm(x)e−x2

dx

= π−1/2 2−n(n!)−1 (2nn!
√
π δm,n

)
= δm,n

Moreover the Hermite functions form an orthonormal basis in L2(R). Indeed
by construction, the Hermite polynomials span the spaceWK = {e−x2/2p(x) :
p(x) ∈ K[x]}. We showed in Theorem 4.1.7 that WK is a dense subspace of
L2(R) and so (hn)n≥0 form a basis in L2(R).
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This can be extended to multi-dimensions in an analogous way to Her-
mite polynomials. Namely if α ∈ Nd

0 where d ≥ 2, define

hα(x) := hα1(x1)hα2(x2) · · ·hαd(xd)

= π−1/4 2−|α|/2 (α!)−1/2 (−1)|α| ex2/2 ∂αe−x
2 (4.5)

As shown in dimension one, the multi-dimension Hermite functions form
an orthonormal system in L2(Rd).

Proposition 4.2.7. For any α, β ∈ Nd
0, 〈hα , hβ〉 = 1{α = β}.

Proof. Observe that

〈hα , hβ〉 =
d∏
i=1
〈hαi , hβi〉

which reduces to dimension 1 result proven above.

Moreover, the multi-dimensional Hermite functions form an orthonormal
basis in L2(Rd). Before we present the proof, we need to define the following.

Definition 4.2.8. Let I be a countably infinite set, V a TVS, and (vi)i∈I
a family of elements in V . Then the sum

∑
i∈I vi is unconditionally con-

vergent to v ∈ V if and only if for any exhausting sequence of finite sets
{ΛN}N≥1, limN→∞

∑
i∈Λi vi = v in the sense of the topology on V .

Note that by “exhausting sequence", we mean

Λ1 ⊂ Λ2 ⊂ · · · ⊂
⋃
N≥1

ΛN = I.

Theorem 4.2.9. (hα)α ∈ Nd
0 is a Hilbertian orthonormal basis of L2(Rd,K).

In particular, ∑
α∈Nd0

〈hα , f〉L2hα = f (4.6)

unconditionally for any f ∈ L2(Rd,K).

Proof. Let ΛN be an exhausting sequence and VN be the linear span of hα for
α ∈ ΛN .Since there are finitely many hα in VN , it follows that VN is a finite
dimensional closed subspace of L2(R,K). Define PN to be the orthogonal
projection on VN , namely

PN (f) =
∑
α∈ΛN

〈hα , f〉hα.

In L2 norm of f , ‖f −PN (f)‖L2 → 0 as N →∞ and since ∪Vn = WK which
we know is dense in L2, the desired sum follows.



136 4. SEQUENCE SPACE REPRESENTATION

Theorem 4.2.10. The map

Φ : L2(Rd, K)→ `2(Nd
0,K)

where
f 7→ (〈hα , f〉)α∈Nd0

is an isomorphism of Hilbert spaces.

Proof. We’ll prove the map is well=defined and surjective. The preservation
of inner product is left as an exercise (difference between R and C cases).

Well-defined. Assume f ∈ L2(Rd,K). Let PN denote the projection
operator on the subspaces VN as defined previously. By application of Par-
seval,

‖f‖2L2 = lim
N→∞

‖PN (f)‖2L2 = lim
N→∞

∑
α∈ΛN

|〈hα , f〉|2 =
∑
α∈Nd0

|〈hα , f〉|2

where the RHS is the definition of the (squared) `2(Nd
0,K). Thus f ∈ L2

insures (〈hα , f〉)α∈Nd0
∈ `2 and so the map Φ is well-defined. Furthermore,

this also shows the map Φ is a linear isometry.
Surjective. Assume (zα) ∈ `2(Nd

0). Pick N = {α : |α| ≤ N} to be
the set of multi-indices below level N . Let fN =

∑
α∈ΛN zαhα be finite

zα combination of Hermite functions. By construction, fN ∈ L2(Rd). If
M ≤ N , then

‖fM − fN‖L2 = ‖
∑

α∈ΛN\ΛM

zαhα‖ =
∑

α∈ΛN\ΛM

|zα|2

where the last equality is by orthonormality. Since (zα) ∈ `2, this ap-
proaches 0 ans N,M → ∞. Hence (fN ) is a Cauchy seqeunce in L2 and
L2 complete immediately gives us (fN ) is a convergent sequence in L2. Let
f := limN→∞ fN ∈ L2. It suffices to show 〈hα , f〉 = zα for all α ∈ Nd

0 but
this follows from construction of f .

〈hα , f〉L2 = lim
N→∞

〈hα , fN 〉L2 = lim
N→∞

1{α ∈ ΛN}zα = zα

Hence Φ(f) = (zα)α∈Nd0
and so Φ is surjective.

4.3 Proof of Sequence Space Representation
Recall from section 2.2.3 that the map

Γd : S(Rd,K)→ (Nd
0,K)

f 7→
(∫

Rd
hα(x)f(x) ddx

)
α∈Nd0
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is a TVS isomorphism. Since hα is real-valued and f ∈ S is seen as a
distribution because of the embedding S ↪→ S′, we have∫

Rd
hα(x)f(x) ddx = 〈hα|f〉L2 = 〈f |hα〉.

Recall that L1(S,S) is the K-VS of continuous linear maps from S to
itself, where multiplication is composition and [A,B] := AB − BA is the
commutator.

Recall that for all i ∈ N, ∂i ∈ L1(S,S), and so for any α ∈ Nd
0, ∂α =

∂α1
1 · · · ∂

αd
d ∈ L1(S,S). Likewise, xα are elements of L1(S,S), where xα is

viewed as the operator which is left multiplication by the monomial xα. To
see that this multiplication operator is continuous, let f ∈ S and α ∈ Nd

0.
Then xαf ∈ C∞, and using Leibnitz rule, we deduce

‖xαf‖β,k := sup
x∈U
〈x〉k

∣∣∣∂βxαf(x)
∣∣∣

≤ sup
x∈U
〈x〉k

∑
0≤γ≤β

(
β

γ

)
|∂γxα|

∣∣∣∂β−γf(x)
∣∣∣

= sup
x∈U
〈x〉k

∑
0≤γ≤β

(
β

γ

) ∣∣∣∣1{γ ≤ α} α!
(α− γ)!x

α−γ
∣∣∣∣ ∣∣∣∂β−γf(x)

∣∣∣
≤ sup

x∈U
〈x〉k

∑
0≤γ≤β

(
β

γ

)
1{γ ≤ α} α!

(α− γ)! 〈x〉
|α|−|γ|

∣∣∣∂β−γf(x)
∣∣∣

≤
∑
γ∈Nd0

1{γ ≤ α, β} α!β!
γ!(α− γ)!(β − γ)! ‖f‖β−γ,|α|−|γ|+k

where the ‖f‖β−γ,|α|−|γ|+k’s are continuous seminorms, hence we have con-
tinuity.

———————— Next we will give some useful commutation relations.
Since multiplication by monomials is commutative, we have for all i, j ∈
{1, ..., d},

[xi, xj ] = 0

By Schwarz’s Theorem (or Clairaut’s theorem on equality of mixed partials)
we have ∀i, j ∈ {1, . . . , d},

[∂i, ∂j ] = 0

. Finally, for all i, j ∈ {1, . . . , d},

[∂i, xj ] = δijI,

where I is the identity operator on S. Indeed, for any f ∈ S, we have
[∂i, xj ]f(x) = (∂ixj − xj∂i)f(x), were, by Leibnitz we have that

∂i(x; f(x)) = (∂ixj)f(x) + xj(∂if)(x).
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For all i, define

ai := 1√
2

(xi + ∂i) (the annihilation separator)

a∗i := 1√
2

(xi − ∂i) (the creation separator)

θi := 1
2(x2

i − ∂2
i ) (the harmonic oscillator)

1 = [∂i, xi] (why??)

The terminology comes from quantum mechanics and a system correspond-
ing to a harmonic oscillator.

Note that we have
θi = a∗i ai + 1

2
Indeed,

2a∗i ai = 2 1√
2

(xi − ∂i)
1√
2

(xi + ∂i)

= (xi − ∂i)(xi + ∂i)
= x2

i − ∂ixi + xi∂i − ∂2
i

= x2
i +−[∂i, xi]− ∂2

i

= 2θi − 1

From this, we get the following commutation relations for all i, j ∈
{1, ..., d}.

• [ai, aj ] = 0

• [a∗i , a∗j ] = 0

• [ai, a∗j ] = δijI

proof: For this, we need only to check when i = j.

[ai, a∗i ] = 1
2[xi + ∂i, xi − ∂i]

= 1
2 ([∂i, xi]− [xi, ∂i])

= 1
2 (I − (−I))

= I

• ∀n ≥ 1, [ai, (a∗i )n] = n(a∗i )n−1
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proof: Proceed by induction, where the case n = 1 was shown above.
For n ≥ 1,

[ai, (a∗i )n+1] = ai(a∗i )n+1 − (a∗i )n+1ai

= ai(a∗i )na∗i − (a∗i )na∗i ai
= ([ai, (a∗i )n] + (a∗i )nai) a∗i − (a∗i )na∗i ai
= [ai, (a∗i )n]a∗i + (a∗i )naia∗i − (a∗i )na∗i ai
= [ai, (a∗i )n]a∗i + (a∗i )n[ai, a∗i ]
= n(a∗i )n−1a∗i + (a∗i )n (by the I.H.)
= (n+ 1)(a∗i )n

Lemma 4.3.1. The following are true:

1. a∗ihα =
√
αi + 1 hα+ei

2. aihα =
{√

αi hα−ei if αi ≥ 1
0 if αi = 0

3. θihα = (αi + 1
2)hα, i.e. the hα are joint eigenvectors for the θi.

4. hα = α!−
1
2 (a∗1)α1 · · · (a∗d)α1dh0.

Proof. Recall that

∂α(e−x2
1 · · · e−x2

d) = ∂α1
1 · · · ∂

αd
d (e−x2

1 · · · e−x2
d) = (∂α1

1 e−x
2
1) · · · (∂αdd e−x

2
d).

Then
hα(x) = π−

d
4 2−

|α|
2 α!−

1
2 (−1)|α|e

x2
2 ∂αe−x

2
.

Applying a∗i gives

∂ihα(x) =
(
π−

d
4 2−

|α|
2 α!−

1
2 (−1)|α|

)
∂ie

x2
2 ∂αe−x

2

= π−
d
4 2−

|α|
2 α!−

1
2 (−1)|α|∂ie

x2
2

(
xie

x2
2 ∂αe−x

2 + e
x2
2 ∂α+eie−x

2
)

and so

a∗ihα(x) = 1√
2

(
π−

d
4 2−

|α|
2 α!−

1
2 (−1)|α|

)
(−1)e

x2
2 ∂α+eie−x

2

=
√
αi + 1 hα+ei(x),

as desired. Now, for any α = α1e1 + · · · + αded, where ei are the standard
basis vectors, we get

hα = α!−
1
2 (a∗1)α1 · · · (a∗d)αdh0
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by starting at 0 = (0, ..., 0) and iterating the identity a∗ihα =
√
αi + 1.

For (2), first note that since

h0 = π−
d
4 e−

x2
2

the computation

∂ih0(x) = π−
d
4 (−xi)e−

x2
2 = −xih0(x)

shows that aih0 = 0. 2

Now, for α 6= 0, we have for each i,

aihα = α!−
1
2ai

d∏
j=1

(a∗j )αjho

= α!−
1
2ai

∏
j 6=i

(a∗j )αj
 ai(a∗i )αiho

= α!−
1
2ai

∏
j 6=i

(a∗j )αj
 ([ai, (a∗i )αi ] + (a∗i )αiai)ho

= α!−
1
2ai

∏
j 6=i

(a∗j )αj
(αi(a∗i )αi−1 + (a∗i )αiai

)
ho

= α!−
1
2ai

∏
j 6=i

(a∗j )αj
 (αi(a∗i )αi−1)ho. (since aih0 = 0)

Now, if αi = 0, then we have aihα = 0. On the other hand, if αi ≥ 1, then
the above is equal to

aihα = αiα!−
1
2ai

∏
j 6=i

(a∗j )αj
((a∗i )αi−1

)
ho

=
√
αihα−ei .

2It jumps by “quanta”. Quanta are discrete, and this is where the term “quantum
mechanics” comes from!
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To show (3), we simply compute

θihα =
(
a∗i ai + 1

2

)
hα

= a∗i aihα + 1
2hα

= a∗i
√
αi hα−ei + 1

2hα (using above fact)

=
√
αi

√
(αi − 1) + 1 h(α−ei)+ei + 1

2hα (using corresponding * fact)

=
√
αi
√
αi hα + 1

2hα

=
(
αi + 1

2

)
hα,

which concludes the proof of the lemma.

Proposition 4.3.2. Γd is well-defined and continuous.

Proof. f ∈ S and k ∈ N0.

∑
α∈Nd0

d∏
i=1

(
αi + 1

2

)2k
|〈hα, f〉L2 |2

≤
∑
α∈Nd0

∣∣∣∣∣
〈

d∏
i=1

(
αi + 1

2

)k
hα, f

〉
L2

∣∣∣∣∣
2

=
∑
α∈Nd0

∣∣∣〈θk1 · · · θkdhα, f〉
L2

∣∣∣2
=
∑
α∈Nd0

∣∣∣〈hα, θk1 · · · θkdf〉
L2

∣∣∣2 (by integration by parts)

=
∥∥∥θk1 · · · θkdf∥∥∥

L2
(by Parseval)

<∞.

Note that this weighted L2 seminorms composed with
√
· is a continuous

seminorm. So, Γd is continuous on S.

Note that we can use the separating family ‖ · ‖p,k of L2 seminorms instead
of ‖ · ‖∞,k.

We’ve seen already that for k ranging through N0 and all p ∈ [1,∞), the
following is a defining collection of seminorms for s(N0):

‖z‖p,k =
( ∑
α∈Nd0

〈α〉k|zα|p
)1/p

.
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We consider p = 2:
‖Γd(f)‖22,k =

∑
α∈Nd0

〈α〉k|zα|2

〈α〉2 = 1 + α2
1 + · · ·+ α2

d ≤
d∏
i=1

(1 + α2
i )

Note that

〈α〉 ≤ 2d
d∏
i=1

(αi + 1
2)

and
‖Γd(f)‖22,k ≤ 2kd

∑
α

∏
i

(αi + 1
2)k|〈hα, f〉L2 |2

≤ 22k||θk1 . . . θkdf ||2L2

where θk1 . . . θkd is a continuous operator from S to S. Furthermore, ||.||L2 is
a continuous seminorm on S(Rd). We have that for g ∈ S,

||g||2L2 =
∫
〈x〉−(d+1)〈x〉d+1|g(x)|2ddx

≤ ||g||2
θ,d d+1

2 e

∫
Rd
〈x〉−(d+1)ddx.

We’ve proven that the following map is continuous:

Γ : S(Rd)→ s(Rd).

Now, define:
Ξd : s(Nd

0)→ S(Rd)

Z = (zα)α∈Nd0
7→ lim

N→∞

∑
|α|≤N

zαhα.

We’ll show Ξd is well-defined, continuous, and inverse to Γd.

Lemma 4.3.3. For all β ∈ Nd
0 and for all k ∈ N0, there exists c < 0 and

exists m ∈ N0 such that for all α ∈ Nd
0,

‖hα‖β,k ≤ c〈α〉m.

We have that c,m are independent from α but can depend on β, k.

Proof. Now we complete the proof of the theorem (not the lemma above!).
For z fixed, we consider:

fN =
∑
|α|≤N

zαkα ∈ S
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M ≤ N ⇒ ‖fN − fM‖β,k = ‖
∑

M≤|α|≤N
zαhα‖β,k

≤
∑

M≤|α|≤N
|zα|‖hα‖β,k

because ∑
α∈Nd0

|zα|‖hα‖β,k <∞

and indeed by lemma 1, for z ∈ s(Nd
0),∑

α∈Nd0

|zα|‖hα‖β,k ≤
∑
α

|zα|C〈α〉m <∞

⇒ (fN ) is Cauchy for all ‖.‖β,k
⇒ we have a convergent sequence, f = lim

N→∞
fN

⇒ Ξd is well-defined, linear, and continuous.
‖Ξd(x)‖β,k = ‖f‖β,k ≤ c‖z‖β,k

where we’re employing a continuous semi-norm on s(Nd
0). Now we consider:

z ∈ s,Γd ◦ Ξd(z) = Γd

(
lim
N→∞

∑
|α|≤N

zαhα

)

= lim
N→∞

Γd

( ∑
|α|≤N

zαhα

)

= lim
N→∞

∑
|α|≤N

zαΓd(hα).

we have that
Γd(hα) =

(
〈hβ, hα〉L2

)
β∈Nd0

where 〈hβ, hα〉L2 = 1{β = α}. Therefore, we have the following:

Γd ◦ Ξd(z) = lim
N→∞

(1{|α| ≤ N}zα)α∈Nd0
→ z

⇒ Γd ◦ Ξd = Ids
Ξd ◦ Γd(f) = lim

N→∞

∑
|α|≤N

〈hα, f〉hα =: g ∈ S

g → f in L2

f = g in L2

f, g are the same functions in S

⇒ Ξd ◦ Γd = Ids



144 4. SEQUENCE SPACE REPRESENTATION

Proof of Lemma. Call a seminorm ‖ · ‖ on S(Rd) good if for all c > 0 there
is m ∈ N0 such that for all α ∈ Nd

0,

‖hα‖ ≤ c〈α〉m

We need to show that for all β ∈ Nd
0 and k ≥ 0, ‖ · ‖β,k is good. First,

we claim that the set N of of good seminorms has the property that if ρ is
a seminorm continuous relative to N, then ρ ∈N.

Indeed, for such ρ, there exist τ1, . . . , τn ∈N and c > 0 such that

ρ ≤ c(τ1 + · · ·+ τn)

By hypothesis, there exist Ai ≥ 0 and mi ∈ N0, 1 ≤ i ≤ n, such that for all
α ∈ Nd

0,
τi(hα) ≤ Ai〈α〉mi ≤ A〈α〉m

where A = max{A1, . . . , An} and m = max{m1, . . . ,mn}. That is, for all
α ∈ Nd

0,
ρ(hα) ≤ cnA〈α〉m

We now show that each ‖ · ‖α,k is continuous relative to N. Recall that if
f ∈ S(Rd), then

‖f‖α,k := sup
x
〈x〉k|∂αf(x)|

Expanding the right-hand side of the inequality

〈x〉k ≤ (1 + x2)k,

we see that ‖ · ‖α,k is continuous relative to the seminorms of the form

‖f‖′α,β := sup
x
|xβ∂αf(x)|, β ∈ Nd

0

We now invoke the Fourier inversion formula:

f(x) = 1
(2π)d

∫
Rd
eiξxf̂(ξ) ddξ.

As in the proof that F(S) ⊆ S, integration by parts and Fubini’s theorem
give

xβ∂αf(x) = i|α|+|β|

(2π)d
∫

Rd
eixξ∂βξ

(
ξα f̂(ξ)

)
ddξ

Thus, by Cauchy-Schwarz,

|xβ∂αf(x)| ≤ 1
(2π)d

∫
Rd
〈ξ〉−(d+1)〈ξ〉d+1

∣∣∣∂βξ (ξα f̂(ξ)
)∣∣∣ ddξ

≤ 1
(2π)d ‖〈ξ〉

−(d+1)‖L2 ‖(1 + ξ2)d+1∂βξ (ξα f̂(ξ))‖L2
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After expanding the last expression above using the Leibnitz rule and the
triangle inequality, we see that ‖f‖′α,β is continuous relative to seminorms
of the form ‖f‖′′γ,δ := ‖ξγ∂δf̂‖L2 .

Recall that ∂δf̂(ξ) = F[(−ix)δf(x)](ξ); that is,

∂δ ◦F= F◦ (−i)|δ|xδ

Integration by parts gives us

ξγ f̂(ξ) =
∫

Rd
(i∂x)γ

(
e−ixξ

)
f(x) ddx

=
∫

Rd
e−ixξ (−i∂x)γ(f(x)) ddx

= F[(−i∂x)γf(x)](ξ)

That is,
ξγ ◦F= F ◦ (−i)|γ|∂γ

Putting these two observations together yields

ξγ ◦ ∂δ ◦F= (−i)|δ|+|γ|F◦ ∂γ ◦ xδ

so that

‖f‖′′γ,δ = ‖F[∂γx(xδ f(x))]‖L2

= (2π)d/2‖∂γ(xδ f(x))‖L2 (Plancherel)

By again expanding via the Leibnitz rule and triangle inequality, we find
that ‖f‖′′γ,δ is continuous relative to seminorms of the form

‖f‖′′′α,β := ‖xα ∂βf(x)‖L2

Because the seminorms ‖ · ‖β,k, which define the topology on S(Rd), are
continuous relative to the continuous seminorms ‖ · ‖′′′α,β above, the latter
form a defining collection of seminorms for the topology on S(Rd). Let
ai, a

∗
i (1 ≤ i ≤ d) be the annihilation and creation operators, respectively,

which were defined in section 4.3. For B = (b1, b2, . . . , bn) a finite sequence
in {a1, . . . , ad, a

∗
1, . . . , a

∗
d} ⊆ L1(S,S), define yet another seminorm ‖ · ‖(4)

B

by
‖f‖(4)

B := ‖b1b2 · · · bnf‖L2

Then ‖ · ‖′′′α,β is continuous relative to ‖ · ‖(4)
B because

xi = ai + a∗i√
2

and ∂i = ai − a∗i√
2
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The last step in the proof is to show that each ‖ · ‖(4)
B is good. Recall

that

a∗ihα =
√
αi + 1hα+ei and aihα =

{√
αi hαi−ei , αi ≥ 1

0, αi = 0

Thus, b1nhα =
√
C hβ for some β ∈ Nd

0 and constant C which is a product
of numbers bounded above by |α| + n + 1. Therefore, for any c > 0 and B
fixed, we can choose m ∈ N0 large enough so that

‖hα‖(4)
B ≤ (|α|+ n+ 1)n‖hα‖L2 = (|α|+ n+ 1)n ≤ c〈α〉m,

showing that ‖ · ‖(4)
B is good.

We introduce a general lemma about topological vector spaces.

Lemma 4.3.4. Assume X and Y are topological vector spaces and that
T : X → Y is continuous and linear. If A ⊂ X is bounded, then T (A) ⊂ Y
is bounded.

Proof. We apply the general definition of “bounded" for subsets of TVS’s.
Let U ⊂ Y be an open neighborhood of the origin. Then T−1(U) is an open
neighborhood of the origin in X. By definition, then, there exists λ > 0
such that λA ⊂ T−1(U). By linearity of T ,

λT (A) = T (λA) ⊂ T (T−1(U)) ⊂ U,

and so T (A) is bounded.

The strong dual construction for topological vector spaces can be viewed
as a contravariant functor from the category of TVS’s to itself. This functor
sends a TVS V to its strong dual V ′ and sends a linear map (morphism)
T : X → Y to its transpose T ′ : Y ′ → X ′, the map such that T ′(L) = L◦T for
all L ∈ Y ′. The adjective “contravariant" refers to the fact that the functor
reverses morphisms’ arrows. By definition, strong duals are always locally
convex. So, this functor maps into the full subcategory of locally convex
TVS’s, a subcategory of the category of TVS’S. The adjective “full" means
if X,Y are members of the subcategory, then T : X → Y is a morphism
(continuous linear map) regardless of whether it is viewed as a member of the
original category or the subcategory. This is indeed the case, since linearity
is an intrinsic property of T .
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We include a quick verification that the transpose is indeed a functor of
TVS’s. That is, it sends continuous linear maps to continuous linear maps.
The fact that it preserves linearity is evident. And if A is bounded in X,
then

‖T ′(L)‖A = sup
x∈A
|T ′(L)(x)| = sup

x∈A
|L(T (x))| = sup

y∈T (A)
|L(y)| = ‖L‖T (A).

Since the collection of seminorms ‖ · ‖A for A bounded defines the strong
operator topology on Y ′ and each T (A) is bounded by the previous Lemma,
then T ′ is continuous by Theorem 2.1.21.

The following relation between transposes and composition is also evident:

(T1T2)′ = T ′2T
′
1

for any linear maps T1 : Y → Z, T2 : X → Y and TVS’s X, Y , Z.

In sections 4.4 and 2.2.2, we showed that we have the following chain of
TVS-isomorphisms (we are renaming the map “t" as Ad).

S(Rd) S (Nd
0) S (N0) = S .

Γd Ad

Applying the transpose functor yields TVS-isomorphisms between strong
duals:

S (N0)′ = (S )′ S (Nd
0)′ S′(Rd).

A′d Γ′d

In Section 2.2.6, we showed there is a TVS-isomorphism I between the
abstract strong dual (S )′ and the sequence space S ′ ⊂ KN0 . Hence, view-
ing S′(Rd) as TVS-isomorphic to (S )′, we have a non-explicit isomorphism
between S′(Rd) and a sequence space. But it is useful to produce such an
isomorphism explicitly.

First, we introduce some generalizations of previous notation:
1. S ′

0(Nd
0) := KN0 denotes the space of all multisequences.

2. S ′
0,+(Nd

0) := [0,∞)N0 denotes the space of all non-negative multise-
quences.

3. For ω ∈ S ′
0,+(Nd

0) and x ∈ S ′
0(Nd

0), let ‖x‖ω :=
∑
α∈Nd0

ωα|xα|.

4. S ′(Nd
0) := {x ∈ S ′

0(Nd
0) : ∃C > 0K ∈ N0 ∀α ∈ Nd

0 , |xα| ≤ C〈α〉k.
This is the space of multisequences with at most polynomial growth.

5. S+(Nd
0) := S (Nd

0) ∩S ′
0,+(Nd

0). This is the space of rapidly decaying
non-negative multisequences.

6. If x, y ∈ S ′
0(Nd

0), we set 〈x, y〉 :=
∑
α∈Nd0

xαyα, if this series is abso-
lutely convergent.
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Let C denote the counting measure on Nd
0 and let x ∈ S ′

0(Nd
0). Then it is

convenient to write

‖x‖ω =
∫
α∈Nd0

wα|xα| dC(α).

Recall (Sect. 2.2.6) that for all d ≥ 2 there is a bijection ρd : N0 → Nd
0

such that for some constants C1, C2 > 0, for all n ≥ 0, we have

〈ρd(n)〉 ≤ C1〈n〉

and
〈n〉 ≤ C2〈ρd(n)〉d.

From this bijection, we obtain a map Ad : S ′
0(Nd

0) → S ′
0(N0) given by

Ad(x) := x ◦ ρd = (xρd(n))n≥0 for x = (xα)α∈Nd0
. This is K-vector space

isomorphism. Since S (Nd
0) ⊂ S ′

0(Nd
0) and S (N0) ⊂ S ′

0(N0), we also let
Ad denote the restricted map Ad : S (Nd

0) → S (N0), which we showed is a
well-defined TVS-isomorphism.

Hence, for x = (xα) ∈ S ′
0(Nd

0) and ω = (ωα) ∈ S ′
0,+, we have

‖x‖ω =
∫
α∈Nd0

ωα|xα| dC(α) =
∫
α∈N0

ωρd(n)|xρd(n)| d(ρ∗dC)(α)

=
∫
α∈N0

ωρd(n)|xρd(n)| dC(α) = ‖(xρd(n))n≥0‖(ωρd(n))n≥0 <∞,

since ρ∗dC = C.

From this computation and the growth property of ρd, it follows that ‖·‖ω
defines a seminorm on S ′(Nd

0) for ω ∈ S+(Nd
0). We define the topology on

S ′(Nd
0) to be the locally convex topology generated by these seminorms

‖ · ‖ω.

Theorem 4.3.5. The map Id : (S (Nd
0))′ → S ′(Nd

0) given by L 7→ (L(eα))α∈Nd0
is a TVS-isomorphism. As before, for all x ∈ S (Nd

0) and L ∈ S (Nd
0)′ we

have
L(x) = 〈Id(L), x〉 =

∑
α∈Nd0

L(eα)xα.

Proof. The case d = 1 was proven in Section 2.2.6. So we assume d ≥ 2.
First, we observe that Ad : S ′(Nd

0)→ S ′(N0) is a TVS-isomorphism. Ad is
well-defined; if x = (xα)α∈Nd0

, then there exists some constants C > 0, k ≥ 1
such that |xα| ≤ C〈α〉k for all α. Hence, for some constant C ′ > 0, for all
n ≥ 0 we have

|Ad(x)n| = |xρd(n)| ≤ C〈ρd(n)〉k ≤ CC ′〈n〉k,
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i.e. Ad(x) ∈ S ′(N0). Ad is evidently bijective since ρd is a bijection. Lin-
earity is also immediate.

We observe that if ω = (ωn)n≥0 ∈ S+(Nd
0), then since the bijection ρd

grows at most polynomially, ω ◦ρ−1
d = (ωρ−1

d
(α))α∈Nd0

∈ S+(N0). To see this,
let C, k > 0 be such that |wα| ≤ C〈α〉k for all α. Then for all n ≥ 0,

|ωρ−1
d

(α)| ≤ C〈ρ
−1
d (n)〉k ≤ CC ′〈n〉k

for some constant C ′ > 0, since ρd grows at most polynomially. Similarly, if
ν = (νn)n≥0 ∈ S+, then ν ◦ ρd ∈ S+(N0).

Continuity follows from the observations that

‖Ad(x)‖ν = ‖x‖ν◦ρ−1
d

and
‖A−1

d (y)‖ω = ‖y‖ω◦ρd
for x ∈ S ′(Nd

0), y ∈ S ′(N0), ω ∈ S+(Nd
0), and ν ∈ S+(N0). As observed,

ω ◦ρd ∈ S+(N0), and ν ◦ρ−1
d ∈ S+(Nd

0). Hence, Ad and A−1
d are continuous

by our criteria for continuity of linear operators on locally convex TVS’s.
Next, we observe that Id can be written as the following composition of

TVS-isomorphisms:

(S (Nd
0)′ S (N0)′ S ′(N0) S ′(Nd

0)
(A′d)−1

I A−1
d

To see this, let α ∈ Nd
0 and L ∈ (S (Nd

0)′. By applying the definitions
outlined above, we have

(A−1
d I(A′d)−1)(L)α = I(A′d)−1(L)e

ρ−1
d

(α)

= (A′d)−1(L)(eρ−1
d

(α)) = LA−1
d (eρ−1

d
(α)) = L(eα),

from which it follows that Id is a TVS-isomorphism such that L(x) =
〈Id(L), x〉 for all x.

This theorem gives us a clearer picture of the strong dual (S (Nd
0)′ by

realizing it as a concrete space of sequences. We apply it immediately to
give a similar realization for the space of distributions.

Theorem 4.3.6. The map Γ̃d : S′(Rd) → S ′(Nd
0) such that Γ̃d(φ) =

(φ(hα))α∈Nd0
for all distributions φ is a TVS-isomorphism. (Recall the no-

tation hα for Hermite functions). This is such that

φ(f) = 〈Γ̃d(φ),Γd(f)〉 =
∑
α∈Nd0

φ(hα)〈hα, f〉L2
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for all distributions φ and test functions. The inverse function is given by
the formula

Γ̃d
−1

: (zα)α∈Nd0
7→

 ∑
α∈Nd0

zα〈hα, ·〉L2

 .
Proof. Γ̃d is equal to Id ◦ (Γ−1

d )′, since for any φ ∈ S′(Rd), we have

(Id(Γ−1
d )′)(φ) = Id(φΓ−1

d ) = (φΓ−1
d (eα)α∈Nd0

= (φ(hα))α∈Nd0
.

As shown, each of these functions are TVS-isomorphisms.

4.3.1 Dual Characterization of Polynomial Growth

To conclude this chapter, we prove that certain sequences spaces we have
introduced can be used to characterize other sequence spaces’ polynomial
growth.

Theorem 4.3.7.

S ′(Nd
0) = {x ∈ S ′

0(Nd
0) : ∀ω ∈ S+(Nd

0) , ‖x‖ω <∞}.

Recall our previous notation: ‖x‖ω denotes the sum
∑
α∈Nd0

wα|xα|

Likewise, for S (Nd
0), we have

S ′(Nd
0) = {x ∈ S ′

0(Nd
0) : ∀ω ∈ S ′

+(Nd
0) , ‖x‖ω <∞}.

Proof. This can be reduced immediately to the case d = 1 by use of the
maps ρd and Ad. Recall that ρd is a bijection between S+(Nd

0) and S+(N0)
which grows at most polynomially. The inclusion of the left-hand side in the
right-hand side is also immediate from the proof of Theorem 4.3.5. Thus,
we need to show that if a non-negative sequence ν ∈ S ′

0,+ is such that∑
n≥0 ωnνn <∞ for all ω ∈ S+, then ν ∈ S ′.
Suppose to the contrary that ν /∈ S ′. We proceed by a diagonal-type

argument to derive a contradiction. By induction, we construct an increasing
sequence

0 ≤ n0 < n1 < n2 < . . .

such that νnk > 〈nk〉k for all k. We do this as follows. Since ν /∈ S ′, then in
particular ν is not bounded. So there exists n0 such that νn0 ≥ 1 = 〈n0〉0.
Now assume inductively that we have chosen 0 ≤ n< . . . < nk. If there
did not exist nk+1 such that νk < 〈n〉k for all n > nk, then we would have
ν ∈ S ′, a contradiction. So we choose a suitable nk+1.



4.3. PROOF OF SEQUENCE SPACE REPRESENTATION 151

Now, we define

ωn :=
{
〈nk〉−k if n = nk

0 otherwise
,

then ω = (ωn)n≥0 ∈ S ′
0,+. We claim that ω ∈ S+. Indeed, for any ` ≥ 0,

we have
sup
n≥0
〈n〉`ωn = sup

k≥0
〈nk〉`〈n−kk ≤ 1 <∞.

Now, by definition of ω, we have∑
n≥0

ωnνn =
∑
k≥0

ωnkνnk ≥
∑
k≥0

1 =∞,

since this last equality holds termwise. This is a contradiction, and so the
desired set-equality holds.
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5

Infinite Dimensional
Multilinear Algebra

Apart from what the name suggests, one could also say that this lays down
the foundations for the Game of Centipedes for infinite dimensional vector
spaces.

The only reference which can be mentioned here are Volumes 3,4 of the
book by Schwartz (Distributions Vectorielles)

This is currently being further investigated by Anderson-Kashnev who
are working in the Topoligical Quantum Field Theory and recent works from
2014 are of interest.

5.1 Tensor Product of Test Function Spaces

Recall the following diagram which we had talked about earlier. We are
going to discuss the notion of tensor product of functions as indicated in the
diagram.

Theorem 5.1.1. The map S(Ra)×S(Rb)→ S(Ra+b), (f, g) 7→ f ⊗g, where

153
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(f ⊗ g)(x, y) := f(x)g(y), is well-defined, bilinear, continuous and the span
of its image is dense.

Proof. First let < x, y > denote the bracketed norm where the x consists
of the first a coordinates and y, the last b coordinates. Clearly we have
1 + |x|2 + |y|2 ≤ (1 + |x|2)(1 + |y|2) and hence we have the inequality
< x, y > ≤ < x >< y >.
• f ⊗ g is C∞.
We have for α ∈ Na

0, β ∈ Nb
0,

< x, y >k |∂αx ∂βy [f(x)g(y)]| ≤< x >k< y >k |∂αx f(x)||∂βy g(y)|. Taking
supremum over x, y, we have
||f ⊗ g||(α,β),k ≤ ||f ||α,k||g||β,k <∞. This shows well-definedness as well

as continuity.
• Density
We can use the following key property and density of the span of Hermite

functions to immediately conclude the required density.
hα,β(x, y) = hα(x)hβ(y) and by definition hα,β = hα ⊗ hβ.

5.2 Nuclear Theorem 1 (NT 1)
Version 1:

Theorem 5.2.1. The map Ka,b : S′(Ra+b) → L2(S(Ra), S(Rb); K) given by
φ 7→

(
(f, g) 7→ φ(f ⊗ g)

)
is well defined and an isomorphism of K-vector

spaces. Here L2(X,Y ; K) is the set of all bilinear forms from X × Y → K.

Proof. We can reduce to sequence spaces, prove the theorem and then con-
clude about the isomorphism in the discussion. Consider the following dia-
gram.

S′(Na+b
0 ) (Γ̃a+b)−1

→ S′(Ra+b)
Ka,b→ L2(S(Ra, S(Rb); K) Γ̃a,Γ̃b→ L2(S(Na

0, S(Nb
0); K)

Let the composition be denoted as ka,b. Let us explicitly look at what
this map does.

Let z = (zα,β)α∈Na0 ,β∈Nb0
∈ S′(Na+b

0 ). z is mapped to φ ∈ S′(Ra+b):
∀ h ∈ S(Ra+b), φ(h) =

∑
α,β zα,β < hα,β, h >L2 . Now φ 7→ B , a bilinear

form:

B(f, g) = φ(f ⊗ g)
=
∑
α,β

zα,β < hα ⊗ hβ, f ⊗ g >L2

Fubini=
∑
α,β

zα,β < hα, f >L2 < hβ, g >L2
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Next B 7→ l ∈ S(Na
0) × S(Nb

0): l(x, y) = B(Γ−1
a (x),Γ−1

b (y)) where x =
(xα)α∈Na0

, y = (yβ)β∈Nb0
. Note that we have,

< hα,Γ−1
a x >L2= [Γa(Γ−1

a (x))]α = xα,
< hβ,Γ−1

b y >L2= [Γb(Γ−1
b (y))]β = yβ.

Thus, z
ka,b7→ l; l(x, y) =

∑
α,β

zα,βxαyβ. Hence z is the matrix of the bilinear

form l.
We want to show now that ka,b is a vector space isomorphism.
Injectivity follows from l(eα, eβ) = zα,β.
φ(f ⊗g) is continuous implies Ka,b is well-defined, so ka,b is well-defined.
Surjectivity: Suppose we have a continuous bilinear form l. Let zα,β :=

l(eα, eβ). Now l continuous implies there exist ρa, ρb continuous semi-norms
on S(Na

0,N
b
0) such that ∀ x, y, |l(x, y) ≤ ρa(x)ρb(y). Now we have the

following chain of inequalities, || · ||∞,0 ≤ || · ||∞,1 ≤ . . . .
Thus ∃ C > 0,∃ n ∈ N0,∀ x ∈ S(Na

0), ∀ y ∈ S(Nb
0, l(x, y)| ≤ C||x||∞,n||y||∞,n.

Take x = eα, y = eβ. So, |zα,β| ≤ C||eα||∞,n||eβ||∞,n.
||eα||∞,n = sup

α′∈Na0

< α′ >n=< α >n. Thus we have

∀ α, β, |zα,β| ≤ C < α >n< β >n≤ C < α, β >2n (since < α, β >=√
1 + |α|2 + |β|2 ≥

√
1 + |α|2) =⇒ z ∈ S′(Na+b

0 ). Note by construction,
ka,b(z) = l.

5.3 Tensor Product of Distributions
Theorem 5.3.1. Let ϕ(x) ∈ S′x(Ra), ψ(y) ∈ S′y(Rb). Then there exists a
unique T (x, y) ∈ S′x,y(Ra+b) such that for any f(x) ∈ Sx(Ra), g(y) ∈ Sy(Rb)

〈T (x, y) , f(x)g(y)〉x,y = 〈ϕ(x) , f(x)〉x〈ψ(y) , g(y)〉y. (5.1)

Proof. The map (f, g) 7→ ϕ(f)ψ(g) continuous and bilinear. By the Nuclear
Theorem (Theorem 5.2.1), there exists a unique map T such that T (f⊗g) =
ϕ(f)ψ(g). This gives the desired result.

The following theorem is “Fubini’s theorem for distributions".

Theorem 5.3.2. For any ϕ(x) ∈ S′x(Ra), ψ(y) ∈ S′y(Rb), h(x, y) ∈ Sx,y(Ra+b),

〈(ϕ⊗ ψ)(x, y) , h(x, y)〉x,y = 〈ϕ(x) , 〈ψ(y) , h(x, y)〉y〉x
= 〈ψ(y) , 〈ϕ(x) , h(x, y)〉x〉y.

(5.2)
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