
MATH 8450 – LECTURE 1 – JAN 18, 2023

ABDELMALEK ABDESSELAM

General introduction to the course:
In this course, we will learn some techniques which are useful to the rigorous mathematical

study of models of quantum field theory (QFT). We will focus on one model, the so called
Euclidean φ4

d model in the Feynman path integral formulation. The plan of the course is in
three parts, with if time permits, a possible fourth part on the construction of the model in
the two-dimensional case.

• Part I: Combinatorial analysis.
• Part II: The infinite volume limit and the method of cluster expansions (originally

introduced in [1]).
• Part III: Perturbative renormalization.

In most physics QFT textbooks one encounters expressions like the following:

Cn(z1, . . . , zn) = 〈φ(z1) · · ·φ(zn)〉 :=
1

Z

∫
Dφ φ(z1) · · ·φ(zn) e−S(φ) , (1)

usually after many pages of introductory material (around p. 293 for instance in [2], and p.
185 in [3]). The above are called the n-point correlation functions of the Euclidean version of
the φ4

d model. The latter is related via analytic continuation to the Minkowski version which
is a QFT describing a bosonic scalar field with quartic self-interactions in d-dimensional
spacetime. Quantum excitations of the field correspond to particles of spin zero and say
mass m ≥ 0.
Warning: Everything in the next few paragraphs is heuristic and is not to be taken too
seriously. These are desiderata rather than mathematical definitions.

In (1), the integral
∫

Dφ is over a vector space F given by the set of all functions φ :
Rd → R (with as usual, addition and scalar multiplication being define pointwise). An
element φ ∈ F is called a classical field configuration or simply a field. The symbol Dφ
stands for the volume element for the Lebesgue measure on F , namely,

Dφ =
∏
x∈Rd

dφx =
∏
x∈Rd

dφ(x) .

Note that φ = (φx)x∈Rd is a package made of uncountably many real numbers φx, in-
dexed/labeled/named by the location x ∈ Rd. So as not to strain our eyes, we will use
the (treacherous) notation φ(x), but it is better to think of it as φx. For instance, the vol-
ume element factor dφ(x) has nothing to do with the notion of differential of φ, traditionally
written the same, and given by

dφ(x) =
d∑
i=1

∂φ

∂xi
(x) dxi ,

as seen in courses on differential calculus and differential geometry.
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Also in (1), the Euclidean action S(φ) is given by

S(φ) =

∫
Rd

ddx

[
1

2

d∑
i=1

(
∂φ

∂xi
(x)

)2

+
m2

2
φ(x)2 +

λ

4!
φ(x)4

]
which features the mass m, as well as the coupling constant λ ≥ 0 which indicates the amount
of intereaction between the underlying particles of the QFT. Note that S is an example of
functional, i.e., a function or map which eats a function as argument and here returns a
number. Another example of functional is the integrand of the functional integral in (1),
namely, the map {

F −→ R
φ 7−→ φ(z1) · · ·φ(zn) e−S(φ)

which involves a given fixed collection of n points z1, . . . , zn in Rd and the evaluations of the
field φ at those points.

Finally Z is a normalization factor,

Z =

∫
Dφ e−S(φ) .

As a result 1
Z
e−S(φ) can be thought of as the density (with respect to the Lebesgue measure

Dφ) of a probability measure on F , an infinite-dimensional analogue of say

1√
2π
e−

x2

2 dx ,

the probability density over R for the standard normal/Gaussian random variable (bell
curve). This justifies the notation 〈· · · 〉 which is the statistical mechanics way of writing
statistical averages/expectations, which probability theorists would denote by E(· · · ). One of
the reasons why the Euclidean version of QFT is important is that it establishes a connection
with statistical mechanics/physics. In the latter (e.g. for the Ising model), one usually studies
random functions φ with domain a discrete lattice/grid like Zd instead of the continuum Rd.
Euclidean QFT, a.k.a statistical field theory (see [4]), is the same, but with the additional
difficulty of working in the continuum versus on a lattice.

Now let us put our mathematician’s hat and examine more closely the formulas written
above. Almost nothing makes rigorous mathematical sense. Textbooks on integration tell
us how to define and compute integrals

∫
RN · · · dNx over finite-dimensional spaces with the

Lebesgue measure dNx = dx1 · · · dxN , even if N = 10100, but here we want to integrate over
F which is infinite-dimensional. Those who took graduate probability have perhaps seen
the measure associated to Brownian motion which is a measure on an infinite-dimensional
space of continuous functions, but it is very different from the Lebesgue measure Dφ which
does not exist.

Even if one could make sense of the measure, there is no reason to trust that the φ’s being
integrated over are differentiable, and therefore

d∑
i=1

(
∂φ

∂xi
(x)

)2

which we will also denote by (∇φ(x))2 or (∂φ)2(x), will be undefined. This is an issue due
to the short distance behavior and the regularity of the field φ. We call that the UV or
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ultraviolet problem because high frequency/Fourier modes correspond to short distances.
Even if one ignores this issue, there is no reason to believe that φ would decay at infinity
fast enough for the integral over Rd defining S(φ) to converge. We will call this the IR or
infrared problem or infinite volume problem which has to do with long distances, i.e., growth
or decay at infinity for the field φ.

Notation: If A,B are two sets, we will denote the set of maps/functions f : A→ B by BA.
We will have no use for the notation N0 and adopt the convention that N := {0, 1, 2, . . .}. The
set of positive integers will be denoted as Z>0 := {1, 2, 3, . . .}. The set of relative integers
will be denoted as usual by Z, and we will, if needed, use the self-explanatory notations
Z≥0,Z≤0,Z<0. Note the duplicate Z≥0 = N. For a finite set A, we will denote the cardinality
or number of elements of A by |A|. For n ∈ N, we let [n] := {1, 2, . . . , n} = {i ∈ N | 1 ≤ i ≤
n}. Of course |[n]| = n, and note in particular that [0] = ∅. If we write an inclusion A ⊂ B,
we allow equality, so we will not use the notation ⊆.

As a first step to address the UV problem, we will replace the very infinite-dimensional
space F = RRd

by the still infinite-dimensionl (in fact even still uncountably so) but less

scary R(LrZ)d . Here L is a fixed integer L > 1 which for technical reason we will choose to be
odd. One could take L = 3, for instance, throughout the remainder of the discussion. On the
other hand r ∈ Z will vary and will ultimately be taken to −∞. What we are doing here is
similar to what engineers and numerical analysits, solving PDEs on the computer, typically
do, namely, replace the continuous domain Rd of φ by a grid/lattice which is a discrete set

(LrZ)d = Lr(Zd) = {(Lrn1, . . . , L
rnd) | k1 ∈ Z, . . . , kd ∈ Z} ⊂ Rd

The UV cutoff r is a parameter which controls the mesh Lr or spacing between neighboring
lattice sites/nodes. In the formula for the action S(φ), we now replace the partial derivative
∂φ
∂xi

(x) by the lattice-adapted finite difference

φ(x+ Lrei)− φ(x)

Lr

where we used the notation e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),. . . for the canonical basis
of Rd. The improper integral

∫
Rd · · · ddx in the definition of S(φ) will be replaced by its

Riemann sum approximation ∑
x∈(LrZ)d

Ldr · · ·

where Ldr is the volume of a (hyper)cubic cell cut by the lattice.
Note that the last sum is still infinite because the original integral is an improper one,

i.e., we have yet to deal with the IR or infinite volume problem. We now introduce another
parameter s ∈ Z, with r ≤ s, which we call the IR cutoff and which controls the size of the
system. Namely instead of Rd we will work in a finite cubic box of linear size Ls, centered
at the origin. We thus make another change to the domain of φ and replace the discrete but
infinite grid (LrZ)d by the finite portion

Λr,s = (LrZ)d ∩
[
−L

s

2
,
Ls

2

]d
.

Hence the infinite sum
∑

x∈(LrZ)d L
dr · · · now becomes a finite sum

∑
x∈Λr,s

Ldr · · · , and the

daunting infinite-dimensional space F for the original functional integrals has been replaced
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by a finite-dimensional space RN with

N = |Λr,s| = Ld(s−r)

as a simple counting of points shows. Note that we could have open or semiopen intervals
like

[
−L

2
, L

2

)
without making any difference because we chose L to be an odd integer.

Finally, we have replaced our original quantities of interest Cn(z1, . . . , zn) by (first attempt)

Cn,r,s(z1, . . . , zn) =
CU
n,r,s(z1, . . . , zn)

CU
0,r,s

where

CU
n,r,s(z1, . . . , zn) =

∫
RΛr,s

∏
x∈Λr,s

dφ(x) φ(z1) · · ·φ(zn)

× exp

− ∑
x∈Λr,s

Ldr

[
1

2

d∑
i=1

(
φ(x+ Lrei)− φ(x)

Lr

)2

+
m2

2
φ(x)2 +

λ

24
φ(x)4

] .

The “U” superscript stands of “unnormalized” correlations, i.e., without the division by the
factor Z = CU

0,r,s. Note that the latter has n = 0 arguments (no zi’s) and is just a real
number.

I said first attempt because there are still some outstanding issues. If x is a point near
the end/boundary of the box, the expression φ(x + Lrei) is as yet undefined. We choose to
impose periodic boundary conditions. This means that if we go out of the box one way we
return from the opposite side. Equivalently the d-dimensional box of size Ls is thought of
as a d-dimensional torus by identifying opposite ((d− 1)-dimensional) faces. More precisely,
there is a bijection

Λr,s −→ (LrZ)d/
(LsZ)d

from a set to a finite Abelian group (for addition), which sends a tuple to it class/coset
modulo the subgroup (LsZ)d. By definition, we understand the addition involved in x+Lrei
as the operation in the above finite quotient group.

Exercise 1. (as per Joe’s question in class) Show that if we used backward finite differences
L−r(φ(x) − φ(x − Lrei)) instead of the forward finite differences L−r(φ(x + Lrei) − φ(x)),
as a replacement for partial derivatives, the finite discrete approximation to S(φ) stays the
same. In other words, prove the identity∑

x∈Λr,s

Ldr

[
1

2

d∑
i=1

(
φ(x)− φ(x− Lrei)

Lr

)2

+
m2

2
φ(x)2 +

λ

24
φ(x)4

]
=

∑
x∈Λr,s

Ldr

[
1

2

d∑
i=1

(
φ(x+ Lrei)− φ(x)

Lr

)2

+
m2

2
φ(x)2 +

λ

24
φ(x)4

]
.

The other issue is the product φ(z1) · · ·φ(zn) where the zj’s are points that are arbitrarily
placed in Rd and may well not belong to the lattice (LrZ)d let alone the portion Λr,s. To
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remedy this problem, for each point zj we replace the evaluation φ(zj) exactly at zj by a
weighted “average” ∫

Rd

ddyj fj(yj)φ(yj) ,

where fj is C∞ and rapidly decaying, and mostly peaked around zj. Then, in order to
accommodate the discrete setting we replace the last integral by the lattice Riemann sum
version ∑

yj∈Λr,s

Ldrfj(yj)φ(yj)

so the correct definition to be used for the unnormalized correlations is

CU
n,r,s(f1, . . . , fn) :=

∫
RΛr,s

∏
x∈Λr,s

dφ(x)
n∏
j=1

 ∑
yj∈Λr,s

Ldrfj(yj)φ(yj)


× exp

−∑
Λr,s

Ldr

[
1

2

d∑
i=1

(
φ(x+ Lrei)− φ(x)

Lr

)2

+
m2

2
φ(x)2 +

λ

24
φ(x)4

] . (2)

We can now state the main problem related to the construction of the φ4 model, which is to
construct the limits

Cn(f1, . . . , fn) = lim
r→−∞

lim
s→∞

CU
n,r,s(f1, . . . , fn)

CU
0,r,s

for all n ∈ N and all test functions f1, . . . , fn.
In fact we will have to be a bit more flexible and allow some parameters like m and λ to

depend on r, in order to get interesting limits. One can think of the collection of multilinear
maps Cn obtained at the end of the day as a QFT. This problem is mostly interesting for
d = 2, 3, 4.

Exercise 2. Show that the integral in (2) is perfectly well defined and convergent when
m ≥ 0, λ ≥ 0 and at least one of them is nonzero. Show that CU

0,r,s > 0 so the division makes

sense. Show that for n odd, the CU
n,r,s vanish identically.

Exercise 3. What becomes of (2) when d = 0? Recall that R0 = R[0] = R∅ is not empty and
has one element.

Next lecture(s): We will look at formal power series (multivariate), how to compose and
invert them. Then we will learn about tensors (“matrices” with not necessarily only two
indices), and the graphical calculus for computations with tensors.
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