MATH 8450 - LECTURE 13 - MAR 1, 2023

ABDELMALEK ABDESSELAM

Proof of the main theorem about combinatorial species:

We now prove Theorem 1 from Lecture 12. There it was stated for two particular combinatorial species \mathscr{F} (Feynman diagrams) and \mathscr{V} (vertex structures), but we will now do this in full generality. We assume we have two arbitrary combinatorial species \mathscr{F}, \mathscr{V}, i.e., endofunctors of the category FinBij. We assume we have a definition of amplitude, i.e., for each pair (E, F) where E is a finite set and $F \in \mathscr{F}(E)$, we associate an element $\mathcal{A}(E, F)$ in some fixed formal power series ring $\mathbb{C}[[Y]]$. Like before, for pairs (E, F) and $\left(E,{ }^{\prime} F^{\prime}{ }^{\prime}\right)$ of finite sets equipped with an instance of a type \mathscr{F} combinatorial structure, we have an equivalence relation $(E, F) \sim\left(E^{\prime}, F^{\prime}\right)$ defined by $\exists \sigma \in \operatorname{Hom}\left(E, E^{\prime}\right), F^{\prime}=\mathscr{F}[\sigma](F)$. We assume that the amplitude $\mathcal{A}(E, F)$ only depends on the equivalence class $[E, F]$ of a pair (E, F). We assume we have a natural transformation (weak sense explained in last lecture) ρ from \mathscr{F} to \mathscr{V}, i.e., for each finite set E we are given a map (not necessarily bijective) ρ_{E} from $\mathscr{F}(E)$ to $\mathscr{V}(E)$. These maps, by hypothesis, satisfy

$$
\mathscr{V}[\sigma] \circ \rho_{E}=\rho_{E^{\prime}} \circ \mathscr{F}[\sigma],
$$

for all finite sets E, E^{\prime} and bijection $\sigma: E \rightarrow E^{\prime}$. Since the notions of equivalence classes and automorphism groups depend on which combinatorial species we are considering, we will make liberal use of \mathscr{F} or \mathscr{V} subscripts, in order to avoid any ambiguity.

We now recall the statement of the theorem.
Theorem 1. We have the equality

$$
\begin{equation*}
\sum_{[E, F]_{\mathscr{F}}} \frac{\mathcal{A}(E, F)}{\left|\operatorname{Aut}_{\mathscr{F}}(E, F)\right|}=\sum_{[E, V]_{\mathscr{V}}} \frac{1}{\left|\operatorname{Aut}_{\mathscr{V}}(E, V)\right|}\left(\sum_{F \in \rho_{E}^{-1}(\{V\})} \mathcal{A}(E, F)\right) \tag{1}
\end{equation*}
$$

More precisely, if the LHS converges in the ambient ring of formal power series, then so does the RHS and equality holds.

Proof: Suppose we have a pair equivalence $(E, F) \sim\left(E^{\prime}, F^{\prime}\right)$ in the context of the species \mathscr{F}, then we can pick a bijection $\sigma: E \rightarrow E^{\prime}$ for which $F^{\prime}=\mathscr{F}[\sigma](F)$. By the hypotheses on ρ, this implies

$$
\rho_{E^{\prime}}\left(F^{\prime}\right)=\left(\rho_{E^{\prime}} \circ \mathscr{F}[\sigma]\right)(F)=\left(\mathscr{V}[\sigma] \circ \rho_{E}\right)(F)=\mathscr{V}[\sigma]\left(\rho_{E}(F)\right) .
$$

This shows that the \mathscr{V}-equivalence class $\left[E, \rho_{E}(F)\right]_{\mathscr{V}}$ only depends on the \mathscr{F}-equivalence class $[E, F]^{\mathscr{F}}$ of a pair (E, F). In other words, we have a "map"

$$
[E, F]_{\mathscr{F}} \rightsquigarrow{ }_{1}^{\left[E, \rho_{E}(F)\right]_{\mathscr{V}}}
$$

and we can group terms in the sum on the LHS of (1) according to the value of $\left[E, \rho_{E}(F)\right]_{\mathscr{V}}$. Namely, we have

The above step is the only one in this proof which involves issues of convergence in $\mathbb{C}[[Y]]$, and it is legitimate because we assumed the full sum on the LHS is convergent. The theorem thus reduces to showing that for each fixed class $[E, V]_{\mathscr{V}}$, we have the equality

$$
\begin{equation*}
\sum_{\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}} \leadsto[E, V]_{\mathscr{V}}} \frac{\mathcal{A}\left(E^{\prime}, F^{\prime}\right)}{\left|\operatorname{Aut}_{\mathscr{F}}\left(E^{\prime}, F^{\prime}\right)\right|}=\frac{1}{\left|\operatorname{Aut}_{\mathscr{V}}(E, V)\right|}\left(\sum_{F \in \rho_{E}^{-1}(\{V\})} \mathcal{A}(E, F)\right) . \tag{2}
\end{equation*}
$$

So we now fix the finite set E and some $V \in \mathscr{V}(E)$ and consider an arbitrary equivalence class $\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}}$ such that $\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}} \rightsquigarrow[E, V]_{\mathscr{V}}$. This means $(E, V) \sim_{\mathscr{V}}\left(E^{\prime}, \rho_{E^{\prime}}\left(F^{\prime}\right)\right)$, and therefore there exists a bijection $\sigma: E \rightarrow E^{\prime}$ such that $\rho_{E^{\prime}}\left(F^{\prime}\right)=\mathscr{V}[\sigma](V)$. Define $F:=\mathscr{F}\left[\sigma^{-1}\right]\left(F^{\prime}\right)$. By construction $\left(E^{\prime}, F^{\prime}\right) \sim_{\mathscr{F}}(E, F)$ and therefore $\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}}=[E, F]_{\mathscr{F}}$. Moreover,

$$
\rho_{E}(F)=\rho_{E}\left(\mathscr{F}\left[\sigma^{-1}\right]\left(F^{\prime}\right)\right)=\mathscr{V}\left[\sigma^{-1}\right]\left(\rho_{E^{\prime}}\left(F^{\prime}\right)\right)=\mathscr{V}\left[\sigma^{-1}\right](\mathscr{V}[\sigma](V))=\mathscr{V}\left[\sigma^{-1} \circ \sigma\right](V)=V,
$$

so that $F \in \rho_{E}^{-1}(\{V\})$. We thus have a surjective parametrization $F \mapsto[E, F]_{\mathscr{F}}, F \in$ $\rho_{E}^{-1}(\{V\}) \subset \mathscr{F}(E)$, for classes $\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}}$ such that $\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}} \rightsquigarrow[E, V]_{\mathscr{V}}$. However, this is not necessarily injective and may lead to overcounting if we simply replace the sum over $\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}}$ by a sum over F on the LHS of (2). To fix this, we introduce the following relation on the set (fiber) $\rho_{E}^{-1}(\{V\})$. For $F_{1}, F_{2} \in \rho_{E}^{-1}(\{V\})$, we let $F_{1} \approx F_{2}$, iff $\left(E, F_{1}\right) \sim_{\mathscr{F}}\left(E, F_{2}\right)$, i.e., $\exists \sigma \in$ $\mathfrak{S}_{E}:=\operatorname{Hom}_{\text {FinBij }}(E, E), F_{2}=\mathscr{F}[\sigma]\left(F_{1}\right)$. It is easy to see that this an equivalence relation on $\rho_{E}^{-1}(\{V\})$ and we will just write $[F]$ for the equivalence class of some $F \in \rho_{E}^{-1}(\{V\})$. We now have a bijective parametrization $[F] \mapsto[E, F]_{\mathscr{F}}$ for classes $\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}}$ such that $\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}} \rightsquigarrow[E, V]_{\mathscr{V}}$. We can now change the summation "index", in order to write the LHS of (2)

$$
\sum_{\left[E^{\prime}, F^{\prime}\right]_{\mathscr{F}} \rightsquigarrow[E, V]_{\mathscr{V}}} \frac{\mathcal{A}\left(E^{\prime}, F^{\prime}\right)}{\left|\mathrm{Aut}_{\mathscr{F}}\left(E^{\prime}, F^{\prime}\right)\right|}=\sum_{\left[F_{1}\right]} \frac{\mathcal{A}\left(E, F_{1}\right)}{\left|\mathrm{Aut}_{\mathscr{F}}\left(E, F_{1}\right)\right|},
$$

where we used F_{1} instead of F because we will soon need another \mathscr{F}-structure F_{2}. Meanwhile, the RHS of (2) is given by

$$
\begin{aligned}
\sum_{F_{2} \in \rho_{E}^{-1}(\{V\})} \frac{\mathcal{A}\left(E, F_{2}\right)}{\left|\operatorname{Aut}_{\mathscr{V}}(E, V)\right|} & =\sum_{\left[F_{1}\right]} \sum_{F_{2} \in\left[F_{1}\right]} \frac{\mathcal{A}\left(E, F_{2}\right)}{\left|\operatorname{Aut}_{\mathscr{V}}(E, V)\right|} \\
& =\sum_{\left[F_{1}\right]} \mathcal{A}\left(E, F_{2}\right) \times \sum_{\left[F_{1}\right]} \sum_{F_{2} \in\left[F_{1}\right]} \frac{1}{\left|\operatorname{Aut}_{\mathscr{V}}(E, V)\right|}
\end{aligned}
$$

In the 1st line, we just organized the sum over $\rho_{E}^{-1}(\{V\}$ according to equivalence classes for \approx. In the 2nd line, we noted that $F_{2} \in\left[F_{1}\right]$ means $\left(E, F_{2}\right) \sim_{\mathscr{F}}\left(E, F_{1}\right)$ which implies $\mathcal{A}\left(E, F_{2}\right)=\mathcal{A}\left(E, F_{1}\right)$, and the amplitude can be factored out of the inner sum. As a result, the equality (2) will hold, if we can show that for all $F_{1} \in \rho_{E}^{-1}(\{V\})$,

$$
\frac{1}{\left|\operatorname{Aut}_{\mathscr{F}}\left(E, F_{1}\right)\right|}=\sum_{\substack{F_{2} \in\left[F_{1}\right] \\ 2}} \frac{1}{\left|\operatorname{Aut}_{\mathscr{V}}(E, V)\right|}
$$

i.e.,

$$
\left|\left[F_{1}\right]\right|=\frac{\left|\operatorname{Aut}_{\mathscr{V}}(E, V)\right|}{\left|\operatorname{Aut}_{\mathscr{F}}\left(E, F_{1}\right)\right|} .
$$

However, this is a staightforward application of the Orbit-Stabilizer Theorem in basic group theory (see following review).

Brief review of group actions:

We recall (or introduce) some notions about group actions on sets, leading to the OrbitStabilizer Theorem invoked in the previous proof.

Definition 1. Let G be a group with operation denoted multiplicatively and neutral element e, and let X be a set. A left-group action of G on X is a map $L: G \times X \rightarrow X$ which satisfies:
(1) $\forall x \in X, L(e, x)=x$,
(2) $\forall g, h \in G, \forall x \in X, L(g h, x)=L(g, L(h, x))$.

In practice, we write $L(g, x)=g x$, so that the above properties become $e x=x$ and $(g h) x=g(h x)$. The latter looks similar to the associative property.

Definition 2. Let G be a group with operation denoted multiplicatively and neutral element e, and let X be a set. A right-group action of G on X is a map $R: X \times G \rightarrow X$ which satisfies:
(1) $\forall x \in X, R(x, e)=x$,
(2) $\forall g, h \in G, \forall x \in X, R(x, g h)=R(R(x, g), h)$.

In practice, we write $R(g, x)=x g$, so that the above properties become $x e=x$ and $x(g h)=(x g) h$.

Example 1. Let G be the symmetric group \mathfrak{S}_{n} and let $X=[n]$. Then we have a left-action $(\sigma, j) \mapsto \sigma(j)$.

Example 2. Let $G=\mathrm{SO}(N), N \geq 2$, namely the group of rotations in N-dimensional (real) space. Here G is the set of orthogonal $N \times N$ matrices, with matrix multiplication as group operation. Let $X=\mathbb{R}^{N}$ seen as the space of column vectors with N components. Then the matrix product $(R, x) \mapsto R x$ is a left-action of G on X.

Example 3.

Note that if $(g, x) \mapsto g x$ is left action of a group G on a set X and if H is a subgroup of G, then by restricting it to $H \times X$, we get a left group action of H on X, and similarly for right actions. One has similar versions for right actions for all the statements/definitions in this review, so we will not keep repeating this "and similarly". Given a left group action of G on X, we define a relation on X as follows. If $x, y \in X$, then we say $x \sim y$, iff $\exists g \in G, y=g x$. It is easy to see that this an equivalence relation on X. The equivalence classes are called the orbits of the group action. In the $\mathrm{SO}(N)$ example, these would be spheres centered at the origin of radius $r \geq 0$. The case $r=0$ is a degenerate situation where the orbit reduces to a point, the origin. For a left action, the orbit of a point $x \in X$ is denoted by

$$
G x:=\{\underset{3}{g x \mid g \in G\}}
$$

Example 4. If G is a group, then it has a right action on itself $X \times G \rightarrow X,(x, g) \mapsto x g$, with $X=G$ and where x, g are arbitrary in G. By taking the restriction to a subgroup H, we get a right action of H on the set G, i.e., $(g, h) \mapsto g h$. The orbits for this action are subsets of G which are of the form $g H:=\{g h \mid h \in H\}$, which are called left cosets of H in G. The set of left cosets is denoted by G / H.

When G (and therefore the subgroup H) is finite, the number of left cosets $[G: H]:=$ $|G / H|$ called the index of H in G is given by

$$
[G: H]=\frac{|G|}{|H|}
$$

which is known as Lagrange's Theorem.
If we have a left action of a group G on a set X and if $x \in X$, then the set

$$
G_{x}:=\{g \in G \mid g x=x\}
$$

forms a subgroup of G, called the stabilizer of x. The map

$$
\begin{aligned}
G / G_{x} & \longrightarrow G x \\
g G_{x} & \longmapsto g x
\end{aligned}
$$

is bijective. When G is finite, and using Lagrange's Theorem, we obtain the Orbit-Stabilizer Theorem which gives the cardinality of the orbit of an element $x \in X$:

$$
|G x|=\frac{|G|}{\left|G_{x}\right|} .
$$

In the previous proof, we have the group $\mathfrak{S}_{E}=\operatorname{Hom}_{\text {FinBij }}(E, E)$ of bijections σ from E to E, with the operation of composition. It has a left action on $\mathscr{F}(E)$ given by

$$
(\sigma, F) \longmapsto \sigma F:=\mathscr{F}[\sigma](F) .
$$

It also has a left action on $\mathscr{V}(E)$ given by

$$
(\sigma, V) \longmapsto \sigma V:=\mathscr{V}[\sigma](V)
$$

Given the fixed $V \in \mathscr{V}(E)$ considered in the previous proof, we see that the stabilizer of V for the action of \mathfrak{S}_{E} is $\operatorname{Aut}_{\mathscr{V}}(E, V)$. When restricting the action of \mathfrak{S}_{E} on $\mathscr{F}(E)$, to the subgroup $\operatorname{Aut}_{\mathscr{V}}(E, V)$, we see that the subset $\rho_{E}^{-1}(V) \subset \mathscr{F}(E)$ is invariant (as a whole, not pointwise) by this last action. We can thus restrict the action further (on the set rather than group side) to a left action of $\operatorname{Aut}_{\mathscr{V}}(E, V)$ on $\rho_{E}^{-1}(V)$. The orbit, for this very last action, of F_{1} is precisely $\left[F_{1}\right]$, whereas the stabilizer of F_{1} is Aut $\mathscr{F}\left(E, F_{1}\right)$, seen as a subgroup of $\operatorname{Aut}_{\mathscr{V}}(E, V)$, instead of the even bigger group \mathfrak{S}_{E}. Therefore the last equation in the previous proof,

$$
\left|\left[F_{1}\right]\right|=\frac{\left|\operatorname{Aut}_{\mathscr{V}}(E, V)\right|}{\left|\operatorname{Aut}_{\mathscr{F}}\left(E, F_{1}\right)\right|},
$$

follows from the Orbit-Stabilizer Theorem.

