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Proof of the main theorem about combinatorial species:

We now prove Theorem 1 from Lecture 12. There it was stated for two particular com-
binatorial species F (Feynman diagrams) and V (vertex structures), but we will now do
this in full generality. We assume we have two arbitrary combinatorial species F ,V , i.e.,
endofunctors of the category FinBij. We assume we have a definition of amplitude, i.e., for
each pair (E,F ) where E is a finite set and F ∈ F (E), we associate an element A(E,F ) in
some fixed formal power series ring C[[Y ]]. Like before, for pairs (E,F ) and (E,′ F,′ ) of finite
sets equipped with an instance of a type F combinatorial structure, we have an equivalence
relation (E,F ) ∼ (E ′, F ′) defined by ∃σ ∈ Hom(E,E ′), F ′ = F [σ](F ). We assume that
the amplitude A(E,F ) only depends on the equivalence class [E,F ] of a pair (E,F ). We
assume we have a natural transformation (weak sense explained in last lecture) ρ from F
to V , i.e., for each finite set E we are given a map (not necessarily bijective) ρE from F (E)
to V (E). These maps, by hypothesis, satisfy

V [σ] ◦ ρE = ρE′ ◦ F [σ] ,

for all finite sets E,E ′ and bijection σ : E → E ′. Since the notions of equivalence classes
and automorphism groups depend on which combinatorial species we are considering, we
will make liberal use of F or V subscripts, in order to avoid any ambiguity.

We now recall the statement of the theorem.

Theorem 1. We have the equality

∑
[E,F ]F

A(E,F )

|AutF (E,F )|
=

∑
[E,V ]V

1

|AutV (E, V )|

 ∑
F∈ρ−1

E ({V })

A(E,F )

 . (1)

More precisely, if the LHS converges in the ambient ring of formal power series, then so does
the RHS and equality holds.

Proof: Suppose we have a pair equivalence (E,F ) ∼ (E ′, F ′) in the context of the species
F , then we can pick a bijection σ : E → E ′ for which F ′ = F [σ](F ). By the hypotheses on
ρ, this implies

ρE′(F ′) = (ρE′ ◦ F [σ])(F ) = (V [σ] ◦ ρE)(F ) = V [σ](ρE(F )) .

This shows that the V -equivalence class [E, ρE(F )]V only depends on the F -equivalence
class [E,F ]F of a pair (E,F ). In other words, we have a “map”

[E,F ]F ⇝ [E, ρE(F )]V
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and we can group terms in the sum on the LHS of (1) according to the value of [E, ρE(F )]V .
Namely, we have

LHS =
∑

[E,V ]V

∑
[E′,F ′]F⇝[E,V ]V

A(E ′, F ′)

|AutF (E ′, F ′)|
.

The above step is the only one in this proof which involves issues of convergence in C[[Y ]],
and it is legitimate because we assumed the full sum on the LHS is convergent. The theorem
thus reduces to showing that for each fixed class [E, V ]V , we have the equality

∑
[E′,F ′]F⇝[E,V ]V

A(E ′, F ′)

|AutF (E ′, F ′)|
=

1

|AutV (E, V )|

 ∑
F∈ρ−1

E ({V })

A(E,F )

 . (2)

So we now fix the finite set E and some V ∈ V (E) and consider an arbitrary equivalence class
[E ′, F ′]F such that [E ′, F ′]F ⇝ [E, V ]V . This means (E, V ) ∼V (E ′, ρE′(F ′)), and therefore
there exists a bijection σ : E → E ′ such that ρE′(F ′) = V [σ](V ). Define F := F [σ−1](F ′).
By construction (E ′, F ′) ∼F (E,F ) and therefore [E ′, F ′]F = [E,F ]F . Moreover,

ρE(F ) = ρE(F [σ−1](F ′)) = V [σ−1](ρE′(F ′)) = V [σ−1](V [σ](V )) = V [σ−1 ◦ σ](V ) = V ,

so that F ∈ ρ−1
E ({V }). We thus have a surjective parametrization F 7→ [E,F ]F , F ∈

ρ−1
E ({V }) ⊂ F (E), for classes [E ′, F ′]F such that [E ′, F ′]F ⇝ [E, V ]V . However, this is not

necessarily injective and may lead to overcounting if we simply replace the sum over [E ′, F ′]F
by a sum over F on the LHS of (2). To fix this, we introduce the following relation on the set
(fiber) ρ−1

E ({V }). For F1, F2 ∈ ρ−1
E ({V }), we let F1 ≈ F2, iff (E,F1) ∼F (E,F2), i.e., ∃σ ∈

SE := HomFinBij(E,E), F2 = F [σ](F1). It is easy to see that this an equivalence relation
on ρ−1

E ({V }) and we will just write [F ] for the equivalence class of some F ∈ ρ−1
E ({V }).

We now have a bijective parametrization [F ] 7→ [E,F ]F for classes [E ′, F ′]F such that
[E ′, F ′]F ⇝ [E, V ]V . We can now change the summation “index”, in order to write the LHS
of (2) ∑

[E′,F ′]F⇝[E,V ]V

A(E ′, F ′)

|AutF (E ′, F ′)|
=

∑
[F1]

A(E,F1)

|AutF (E,F1)|
,

where we used F1 instead of F because we will soon need another F -structure F2. Meanwhile,
the RHS of (2) is given by∑

F2∈ρ−1
E ({V })

A(E,F2)

|AutV (E, V )|
=

∑
[F1]

∑
F2∈[F1]

A(E,F2)

|AutV (E, V )|

=
∑
[F1]

A(E,F2)×
∑
[F1]

∑
F2∈[F1]

1

|AutV (E, V )|
.

In the 1st line, we just organized the sum over ρ−1
E ({V } according to equivalence classes

for ≈. In the 2nd line, we noted that F2 ∈ [F1] means (E,F2) ∼F (E,F1) which implies
A(E,F2) = A(E,F1), and the amplitude can be factored out of the inner sum. As a result,
the equality (2) will hold, if we can show that for all F1 ∈ ρ−1

E ({V }),
1

|AutF (E,F1)|
=

∑
F2∈[F1]

1

|AutV (E, V )|
,
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i.e.,

|[F1]| =
|AutV (E, V )|
|AutF (E,F1)|

.

However, this is a staightforward application of the Orbit-Stabilizer Theorem in basic group
theory (see following review). □

Brief review of group actions:

We recall (or introduce) some notions about group actions on sets, leading to the Orbit-
Stabilizer Theorem invoked in the previous proof.

Definition 1. Let G be a group with operation denoted multiplicatively and neutral element
e, and let X be a set. A left-group action of G on X is a map L : G × X → X which
satisfies:

(1) ∀x ∈ X, L(e, x) = x,
(2) ∀g, h ∈ G, ∀x ∈ X, L(gh, x) = L(g, L(h, x)).

In practice, we write L(g, x) = gx, so that the above properties become ex = x and
(gh)x = g(hx). The latter looks similar to the associative property.

Definition 2. Let G be a group with operation denoted multiplicatively and neutral element
e, and let X be a set. A right-group action of G on X is a map R : X × G → X which
satisfies:

(1) ∀x ∈ X, R(x, e) = x,
(2) ∀g, h ∈ G, ∀x ∈ X, R(x, gh) = R(R(x, g), h).

In practice, we write R(g, x) = xg, so that the above properties become xe = x and
x(gh) = (xg)h.

Example 1. Let G be the symmetric group Sn and let X = [n]. Then we have a left-action
(σ, j) 7→ σ(j).

Example 2. Let G = SO(N), N ≥ 2, namely the group of rotations in N-dimensional (real)
space. Here G is the set of orthogonal N ×N matrices, with matrix multiplication as group
operation. Let X = RN seen as the space of column vectors with N components. Then the
matrix product (R, x) 7→ Rx is a left-action of G on X.

Example 3.

Note that if (g, x) 7→ gx is left action of a group G on a set X and if H is a subgroup of G,
then by restricting it to H×X, we get a left group action of H on X, and similarly for right
actions. One has similar versions for right actions for all the statements/definitions in this
review, so we will not keep repeating this “and similarly”. Given a left group action of G on
X, we define a relation on X as follows. If x, y ∈ X, then we say x ∼ y, iff ∃g ∈ G, y = gx.
It is easy to see that this an equivalence relation on X. The equivalence classes are called
the orbits of the group action. In the SO(N) example, these would be spheres centered at
the origin of radius r ≥ 0. The case r = 0 is a degenerate situation where the orbit reduces
to a point, the origin. For a left action, the orbit of a point x ∈ X is denoted by

Gx := {gx | g ∈ G} .
3



Example 4. If G is a group, then it has a right action on itself X ×G → X, (x, g) 7→ xg,
with X = G and where x, g are arbitrary in G. By taking the restriction to a subgroup H,
we get a right action of H on the set G, i.e., (g, h) 7→ gh. The orbits for this action are
subsets of G which are of the form gH := {gh | h ∈ H}, which are called left cosets of H in

G. The set of left cosets is denoted by G/
H .

When G (and therefore the subgroup H) is finite, the number of left cosets [G : H] :=∣∣∣G/
H

∣∣∣ called the index of H in G is given by

[G : H] =
|G|
|H|

which is known as Lagrange’s Theorem.
If we have a left action of a group G on a set X and if x ∈ X, then the set

Gx := {g ∈ G |gx = x}
forms a subgroup of G, called the stabilizer of x. The map

G/
Gx

−→ Gx

gGx 7−→ gx

is bijective. When G is finite, and using Lagrange’s Theorem, we obtain the Orbit-Stabilizer
Theorem which gives the cardinality of the orbit of an element x ∈ X:

|Gx| = |G|
|Gx|

.

In the previous proof, we have the group SE = HomFinBij(E,E) of bijections σ from E to
E, with the operation of composition. It has a left action on F (E) given by

(σ, F ) 7−→ σF := F [σ](F ) .

It also has a left action on V (E) given by

(σ, V ) 7−→ σV := V [σ](V ) .

Given the fixed V ∈ V (E) considered in the previous proof, we see that the stabilizer of V
for the action of SE is AutV (E, V ). When restricting the action of SE on F (E), to the
subgroup AutV (E, V ), we see that the subset ρ−1

E (V ) ⊂ F (E) is invariant (as a whole, not
pointwise) by this last action. We can thus restrict the action further (on the set rather
than group side) to a left action of AutV (E, V ) on ρ−1

E (V ). The orbit, for this very last
action, of F1 is precisely [F1], whereas the stabilizer of F1 is AutF (E,F1), seen as a subgroup
of AutV (E, V ), instead of the even bigger group SE. Therefore the last equation in the
previous proof,

|[F1]| =
|AutV (E, V )|
|AutF (E,F1)|

,

follows from the Orbit-Stabilizer Theorem.
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