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Formal power series continued:

The ring of formal power series (FPS):
Again, letR be a ring (commutative with unit). The ring of formal power seriesR[[X1, . . . , Xn]]

over R, i.e., with coefficients in R, is defined as follows. As a set, this is just the set of all
multisequences (aα)α∈Nn of elements of R. Namely,

R[[X1, . . . , Xn]] := RNn .

This is almost like the previous ring of polynomials, except we do not impose the almost-finite
condition. We will use the notation

(aα)α∈Nn =:
∑
α∈Nn

aαX
α

as we did for polynomials. For an element A =
∑

α∈Nn aαX
α, or A(X), or A(X1, . . . , Xn) in

R[[X1, . . . , Xn]], and for a multiindex γ, we let [Xγ]A denote the coefficient of the monomial
Xγ in A, i.e., [Xγ]A := aγ.

We also define addition and multiplication in the same manner as before. Namely, we let(∑
αNn

aαX
α

)
+

(∑
αNn

bαX
α

)
:=
∑
αNn

(aα + bα)Xα .

Alternatively, one could have said, for all A,B in the ring of formal power series R[[X]]
(shorthand for R[[X1, . . . , Xn]] if clear from the context), the sum is defined by letting

[Xγ](A+B) = ([Xγ]A) + ([Xγ]B)

for all γ ∈ Nn. Multiplication is also defined as we did for formal polynomials:(∑
α∈Nn

aαX
α

)
×

(∑
α∈Nn

bαX
α

)
:=
∑
α∈Nn

cαX
α

where, for all multiindices γ ∈ Nn,

cγ =
∑

α,β∈Nn
1l{α + β = γ} aαbβ . (1)

If one were to adhere to the uber uptight Bourbaki standards of rigor, the sum would be
written as ∑

(α,β)∈Nn×Nn
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because we are summing over ordered pairs (α, β) of multiindices with n components. We
will allow ourselves to be a little sloppy and write instead∑

α,β∈Nn

which should be clear enough. The sum defining the value of cγ looks like an infinite double
sum, but it is really a finite sum in disguise because only finitely many pairs (α, β) can
contribute a nonzero value (in the ground ring R). More precisely,

|{(α, β) ∈ Nn × Nn | α + β = γ}| = (γ1 + 1) · · · (γn + 1) <∞

because this amounts to counting α’s such that 0 ≤ α ≤ γ where the inequalities are
component-wise, i.e., mean ∀i ∈ [n], 0 ≤ αi ≤ γi.

Proposition 1. (R[[X]],+,×) is a ring (commutative with unit).

Exercise 1. Prove this proposition.

The ring R[[X]] = RNn =
∏

α∈Nn R, a countable product of copies of the set R, can also
be seen as a topological space. Namely, put the discrete topology on R, and then take the
product topology. This immediately gives us a notion of convergent sequences in R[[X]]. Let
(Sk)k≥0 be a sequence of elements in R[[X]] and let ` be an element in R[[X]]. The sequence
converges to `, i.e., limk→∞ Sk = ` iff

∀α ∈ Nn,∃K ≥ 0,∀k ≥ K, [Xα]Sk = [Xα]` .

If you know about topology, prove the above characterization, and if not, take it as a defi-
nition of convergence for sequences of FPS’s.

Infinite sums in the ring of FPS’s:
Let I be a set (possibly uncountable, be we will only use countable examples), and let

(Si)i∈I be a family of elements of R[[X]] indexed by I. We will say that sum∑
i∈I

Si

converges and is equal to some element S ∈ R[[X]] iff for all α ∈ Nn, there exists a finite
subset J of I such that for all K finite set satisfying J ⊂ K ⊂ I, we have

[Xα]
∑
i∈K

Si = [Xα]S .

The definition might seem strange, but it is written that way so one does not need to invoke
some ordering (order of summation) of the index set I. When I is countable and convergence
holds, the sum does not depend on any order of summation.

Remark 1. A cautionary tale is provided by Riemann’s Series Rearrangement Theorem (see,
e.g., [1]) which says that if a series of real numbers is conditionally convergent (converges
but is not absolutely convergent) then one can permute the terms in order to make the sum
be equal to any real number we want! The above definition of convergent sums in R[[X]] is
a robust notion of convergence called unconditional convergence (often used as synonymous
for convergence regardless of summation order).
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An equivalent way to phrase
∑

i∈I Si = S is to say that for all multiindex α, the sum∑
i∈I [X

α]Si has only finitely many nonzero terms and is equal to [Xα]S.
For a multiindex α, we will see the monomial Xα as a particular FPS, namely, the one

given by the collection of coefficients

(1l{γ = α})γ∈Nn .
We can also define a scalar multiplication · : R × R[[X]] → R[[X]], in a coefficient-wise
manner,

c ·
∑
α∈Nn

aαX
α :=

∑
α∈Nn

(caα)Xα .

With these last definitions, the expression∑
α∈Nn

aαX
α

can now also be understood as a series in R[[X]]. It is easy to see, that this series converges
to the element of R[[X]] given by (aα)α∈Nn . In other words, what earlier was merely some
funny notation can now be taken seriously as a sum, both interpretations being consistent.

A few more properties of FPS’s: Contrary to polynomials, one does not have a way to
plug elements of the ground ring R (later this will be R or C) inside FPS’s in order to get
functions/maps Rn → R. A notable exception is to plug zero, i.e., doing the substitutions
X1 := 0R, . . . , Xn := 0R. This is just the evaluation at zero map R[[X]]→ R given by∑

α∈Nn
aαX

α −→ a(0...,0) ,

i.e., the extraction of the constant term.
One also has a well defined notion of differentiation. For any i ∈ [n], and for any A =∑
α∈Nn aαX

α in R[[X]], we let

∂A

∂Xi

:=
∑
α∈Nn
|α|≥1

αiaαX
α−ei

where the last sum is a convergent series in the previous sense. Here ei is notation for the
canonical basis of Rn which contains Nn.

An element a in a ring R is called invertible iff it has a multiplicative inverse, i.e., ∃b ∈
R, ab = 1. One has the following result about rings of FPS’s.

Proposition 2. An element A in the ring of FPS’s R[[X]] = R[[X1, . . . , Xn]] is invertible
iff its constant term [X0]A is an invertible element of R.

Exercise 2. Prove the last proposition. Hint: use the formula (1+x)−1 = 1−x+x2−x3+· · · .
If this is too hard, read the next subsection on composition and then come back to finish this
exercise.

Composition:
We now arrive at the main core subtopic regarding FPS’s which is about how to substi-

tute FPS’s inside other FPS’s. This is a purely formal algebraic analogue of the notion of
composition of multivariate maps. From now on R = C so we will be only talking about
FPS’s with complex (or real) coefficients.
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Let C[[X]] = C[[X1, . . . , Xn]] be the set of formal power series with complex coefficients
with respect to the collection of variables X1, . . . , Xn. Let C[[Y ]] = C[[Y1, . . . , Yp]] be the
set of formal power series with complex coefficients with respect to another collection of
variables Y1, . . . , Yp. Let

f(X1, . . . , Xn) = f =
∑
α∈Nn

fαX
α ∈ C[[X]]

and let g1, . . . , gn ∈ C[[Y ]], or to fix notations

gi(Y ) = gi(Y1, . . . , Yp) =
∑
β∈Np

gi,βY
β

for all i ∈ [n]. Our goal is to define the FPS in C[[Y ]] given by

h(Y1, . . . , Yp) = f(g1(Y1, . . . , Yp), . . . , gn(Y1, . . . , Yp)) .

The essential condition we will need is that the g’s have no constant term:

∀i ∈ [n], gi,0 = 0 .

The zero next to i is of course the zero multiindex (0, . . . , 0) with n components.
As suggested by the formula for f and the idea that Xi is replaced by gi(Y ), we let

h :=
∑
α∈Nn

fαg1(Y )α1 · · · gn(Y )αn .

This is a series
∑

α∈Nn Sα in the ring of FPS’s C[[Y ]] with Sα := fαg1(Y )α1 · · · gn(Y )αn . To
show this is well defined, we need to show the following claim.

Claim: For all γ ∈ Np, only finitely many α’s are such that [Y γ]Sα 6= 0.

Proof: We start by writing the product in full, i.e., writing g1(Y )α1 = g1(Y ) · · · g1(Y ), α1

times, etc. Then we insert the sum defining each such individual factor, making sure the
(dummy) summation indices have different names for each factors.

Sα = fα

 ∑
β(1,1)∈Np

g1,β(1,1)Y
β(1,1)

 · · ·
 ∑
β(1,α1)∈Np

g1,β(1,α1)Y
β(1,α)


×

 ∑
β(2,1)∈Np

g2,β(2,1)Y
β(2,1)

 · · ·
 ∑
β(2,α2)∈Np

g2,β(2,α2)Y
β(2,α2)


...

×

 ∑
β(n,1)∈Np

gn,β(n,1)Y
β(n,1)

 · · ·
 ∑
β(n,αn)∈Np

gn,β(n,αn)Y
β(n,αn)


= fα

n∏
i=1

 αi∏
j=1

 ∑
β(i,j)∈Np

gi,β(i,j)Y
β(i,j)

 .

Note that for each chosen values of i and j, β(i, j) is a full multiindex with p components

β(i, j) = (β(i, j)1, . . . , β(i, j)p)
4



where the β(i, j)k are nonnegative integers.
If you did Exercise 1, in particular the associativity of multiplication, you know how to

expand a product of three sums, as a consequence of the definition (1). Go ahead and
generalize that to a product of α1 + · · ·+ αn = |α| sums, as in the expression for Sα. After
the dust settles, we get

Sα = fα
∑
B

[
n∏
i=1

(
αi∏
j=1

gi,β(i,j)

)]
× Y

∑n
i=1(

∑αi
j=1 β(i,j))

where B is shorthand for a rather complicated data structure. Namely,

B = (β(i, j)) 1≤i≤n
1≤j≤αi

∈ (Np)α1+···+αn

or equivalently

B = (β(1, 1), . . . , β(1, α1); . . . ; β(n, 1), . . . , β(n, αn)) .

This is like a two dimensional array/spreadsheet, where the rows can have different lengths
and the cells are filled with mutiindices. A better handling of these data structures can be
done as follows. For a given multiindex α = (α1, . . . , αn) ∈ Nn we define a set of points with
integer coordinates in the plane, or diagram Dα by

Dα := {(i, j) ∈ [n]× Z>0 | 1 ≤ j ≤ αi} .
As in matrix algebra/Excel, it is good to draw the i coordinate on a vertical axis numbered
from 1 to n from top to bottom, and j on a horizontal axis numbered from 1 and increasing
from left to right. Elements of Dα indicate location of cells in a spreadsheet. These cells will
then be filled with contents or values which are multiindices. An object previously denoted
by B is thus the same thing as a map Dα → Np. Hence,

Sα = fα
∑

B∈(Np)Dα

[
n∏
i=1

(
αi∏
j=1

gi,β(i,j)

)]
× Y

∑n
i=1(

∑αi
j=1 β(i,j)) .

Remark 2. We have seen in Lecture 2 the notion of set partition. There is also the notion
of integer partition which is an important concept featuring in number theory, combinatorics
and representation theory. It is the same thing as a multiindex α with the extra condition
that the components are nonincreasing α1 ≥ α2 ≥ · · · . If α is such a partition, then Dα

is called the Ferrers diagram of that integer partition, where locations (i, j) are represented
by square boxes. A filling of such a diagram by integers, i.e., a map like B with p = 1,
is called a Young tableau. If you studied QCD (Quantum Chromodynamics, the theory of
strong interactions between quarks) which involves the representation theory of the group
SU(3), you have probably seen such diagrams and tableaux.

We can now express, for a given Y monomial, the corresponding coefficient in Sα. Namely,
for any γ ∈ Np and any α ∈ Nn, we have

[Y γ]Sα = fα
∑

B∈(Np)Dα

[
n∏
i=1

(
αi∏
j=1

gi,β(i,j)

)]
× 1l

{
n∑
i=1

(
αi∑
j=1

β(i, j)

)
= γ

}
.

Suppose [Y γ]Sα 6= 0. Then, there exists B, for which the corresponding term/summand is
nonzero. This implies that for all (i, j) ∈ Dα, gi,β(i,j) 6= 0, and therefore |β(i, j)| ≥ 1 (this is
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the crux of the proof with the use of the zero constant term hypothesis for the g’s). Thus,
using the additivity of lengths of multiindices,

|γ| =

∣∣∣∣∣
n∑
i=1

(
αi∑
j=1

β(i, j)

)∣∣∣∣∣ =
n∑
i=1

(
αi∑
j=1

|β(i, j)|

)
≥

n∑
i=1

(
αi∑
j=1

1

)
= |Dα| = |α| .

Since ony finitely many α’s satisfy |α| ≤ |γ|, we proved that only finitely many α’s are such
that [Y γ]Sα 6= 0. �

This concludes the proof that composition is well defined. Next lecture, we will prove the
Inverse Function Theorem for formal power series.
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