
MATH 8450 – LECTURE 5 – FEB 1, 2023

ABDELMALEK ABDESSELAM

Tensors and diagrams cont’d:
In this lecture we will do a bit of practice with graphical computations. The emphasis is on

understanding the evaluation of individual pictures/diagrams. Later we will consider expan-
sions involving infinitely many diagrams which will require more notions from combinatorics,
as far as how to properly encode these pictures.

Let us start with the n = 2 case of the Cayley-Hamilton Theorem from the last lecture.
The LHS of the equation, involving the antisymmetrizer of size 3, multiplied by 3! = 6 in
order to get rid of the denominators, becomes

6× LHS = +

+ −
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− −

after expansion of the antisymmetrizer. Therefore, we have, after evaluating the 6 pictures,
in the same order, and stating the equality ∀i, j, as an equality of matrices:

6× LHS = (tr A)2I + A2 + A2 − tr(A2)I − (tr A)A− (tr A)A .

Thus

3× LHS = A2 − (tr A)A+
(tr A)2 − tr(A2)

2
I . (1)

For the 2 by 2 matrix A, the characteristic polynomial is

det(λI − A) =

∣∣∣∣λ− A11 −A12

−A21 λ− A22

∣∣∣∣
= λ2 − (tr A)λ+ det(A) ,

whereas

(tr A)2 − tr(A2)

2
=

1

2

[
(A11 + A22)

2 − (A11A11 + A12A21 + A21A12 + A22A22)
]

= A11A22 − A12A21

= det(A) .

So (1) is indeed the result of substituting A for λ in the characteristic polynomial. Namely,
for n = 2, we checked that the graphical equation at the end of Lecture 4 is the statement
of the Cayley-Hamilton Theorem.

Homogeneous polynomials: Consider a homogeneous polynomial of degree d in n vari-
ables

F (x) = F (x1, . . . , xn) =
∑
α∈Nn
|α|=d

fαx
α1
1 · · ·xαnn .

Since we are working over the infinite field C, we will not distinguish the formal polynomial in
C[x1, . . . , xn] from the associated polynomial function Cn → C, because we have a bijective
correspondence between these two notions. Such homogeneous polynomials F are in bijective
correspondence with symmetric tensors:

F ←→ (Fi1,...,id)i1,...,id∈[n] ∈ C[n]d ' Cnd .
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Here symmetric means that the tensor satisfies, ∀σ ∈ Sd, ∀(i1, . . . , id) ∈ [n]d,

Fiσ(1),...,iσ(d) = Fi1,...,id .

The correspondence is defined by imposing, that for all x,

F (x) =
∑

(i1,...,id)∈[n]d
Fi1,...,idxi1 · · · xid .

Since we are dealing with a symmetric tensor, we will use a more symmetrical or round
graphical representation for the tensor F :

:= Fi1,...,id

As a result

=
∑

(i1,...,id)∈[n]d
Fi1,...,idxi1 · · · xid = F (x).

For a given homogeneous polynomial F (x), we need the precise relationship between “the
sum of monomials” description

F (x) =
∑
α∈Nn
|α|=d

fαx
α1
1 · · ·xαnn

and the tensorial description

F (x) =
∑

(i1,...,id)∈[n]d
Fi1,...,idxi1 · · · xid ,
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i.e., the relation between the tensor entries Fi1,...,id and the monomial coefficients fα. Let us
define a map

µ : [n]d −→ Nn

I = (i1, . . . , id) 7−→ µ(I)

as follows. For all j ∈ [n], we let the j-th component of the multiindex µ(I) be

µ(I)j := |{` ∈ [d] | i` = j}| .

We call µ(I) the multiplicities multiindex of the index sequence I because it simply counts
how many times the index value 1 appears, how many times the index value 2 appears, etc.
The map is surjective and a section (map given by a choice of preimage) is provided by

α 7−→ 1α12α2 · · ·nαn := (1, . . . , 1, 2, . . . , 2, . . . , n . . . , n)

where 1 appears α1 times, followed by 2 appearing α2 times, and so on. We now have, with
perhaps too much detail,

F (x) =
∑

(i1,...,id)∈[n]d
Fi1,...,idxi1 · · ·xid

=
∑
I∈[n]d

1× Fi1,...,id xi1 · · ·xid

=
∑
I∈[n]d

∑
α∈Nn
|α|=d

1l{µ(I) = α}

× Fi1,...,id xi1 · · ·xid
=

∑
I∈[n]d

∑
α∈Nn
|α|=d

1l{µ(I) = α} × Fi1,...,id xi1 · · ·xid

=
∑
α∈Nn
|α|=d

∑
I∈[n]d

1l{µ(I) = α} × Fi1,...,id xi1 · · ·xid

=
∑
α∈Nn
|α|=d

∑
I∈[n]d

1l{µ(I) = α} × F1α12α2 ···nαn x
α

=
∑
α∈Nn
|α|=d

F1α12α2 ···nαn x
α

∑
I∈[n]d

1l{µ(I) = α}

 .

Now we have∑
I∈[n]d

1l{µ(I) = α} =

(
d

α1

)(
d− α1

α2

)
· · ·
(
d− α1 · · · − αn−1

αn

)
=

d!

α1! · · ·αn!

which is called the multinomial coefficient usually denoted by(
d

α1, . . . , αn

)
.
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We will also use the notation
(
d
α

)
= d!

α!
where α! := α1! · · ·αn!. The above count corresponds

to choosing where to put the 1’s among d spots, where to put the 2’s , etc. when forming
an index sequence I with imposed multiplicity multiindex α. Since the coefficients in the
monomial expansion are uniquely determined, we get the relation(

d

α

)
F1α12α2 ···nαn = fα

Equivalently, because of the symmetry of the tensor, for all I = (i1, . . . , id) ∈ [n]d,

FI =
1(
d
α

)fα (2)

where α = µ(I). With this elementary but important relation in hand we will now do some
practice with graphical computations while revisiting some early childhood mathematics.

Solving quadratic equations: When a 6= 0, the solutions to the quadratic equation

ax2 + bx+ c = 0

are of course given by the formula

x =
−b±

√
b2 − 4ac

2a

which features the fundamental quantity ∆2 := b2 − 4ac or discriminant. The latter detects
root collision.

The previous discussion suggests the need for a homogeneous polynomial in order to
bring graphical calculus into play. So we change the name of the variable x to x1 and
introduce a new variable x2 to be used as padding material, in order to make all the terms
of f(x) = ax2 + bx+ c become of total degree 2. Namely, we define the polynomial

F (x1, x2) := ax21 + bx1x2 + cx22 .

This is called the homogeneization of f . Its tensorial representation is

F (x1, x2) := F11x
2
1 + 2F12x1x2 + F22x

2
2

and therefore the entries of the corresponding symmetric tensor are

F11 = a

F12 =
b

2

F21 =
b

2
F22 = c .

We will need a new elementary building block for our diagrammatic computations corre-
sponding to the tensor (or matrix rather)

ε = (εij)i,j∈[2] =

(
0 1
−1 0

)
.
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We let

:= εij

We now have the following result.

Proposition 1. The discriminant is given by

∆2 = −2×

Proof: By definition,

=
2∑

i,j,k,`=1

Fijεikεj`Fk`

since there are four elementary pieces assembled (two F ’s and two ε’s) and four sutures/junction
points (and therefore four indices to be summed over). The last sum written in full (ignoring
terms giving zero when i = k or j = `) is

F11F22 + F12F21 × (−1) + F21F12 × (−1) + F22F11(−1)2

= 2F11F22 − 2F 2
12 = 2ac− b2

2
after substituting the values of the F tensor entries, and the proposition follows. �

Solving cubic equations: Let us consider the case of cubic equations

ax3 + bx2 + cx+ d = 0
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with a 6= 0. By dividing by a, one can reduce the general situation to the case a = 1 which
we now assume. Then one can “complete the cube” by writing the equation as

(
x+

b

3

)3

+ · · · = 0

and also change variables to x + b
3

instead of x (a particular case of a Tschirnhaus trans-
formation). This brings us to the case of depressed or reduced cubic equations f(x) = 0
with

f(x) = x3 + px+ q .

The solutions are then given by the so-called Cardano formula

x =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
.

A priori, there are three choices for the cube roots, so a total of 9 possibilities, however, one
has to pick the cube roots such that their product is equal to −p

2
. Note the conspicuous

quantity

∆3 =
q2

4
+
p3

27

which up to a constant multiple is the discriminant which here too detects root collision.
Like before, we introduce the homogeneization of f given by

F (x1, x2) := x31 + px1x
2
2 + qx32 ,

and the corresponding symmetric tensor (Fijk)1≤i,j,k≤3, as well as its graphical representation
by a round “blob” with three legs. From (2) we read off the tensor entries which are given
explicitly by

F111 = 1

F112 = 0

F122 =
p

3
F222 = q ,

while the missing entries can be deduced by changing the position of indices, since the tensor
is symmetric.
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Proposition 2. We have

∆3 = −1

8
×

Proof: By definition, the evaluation of the picture is given by a sum over twelve indices
which results in 4096 terms which are product of four F tensor entries and six ε matrix
entries. Note that the antisymmetry of the matrix ε forces the value of the second index
if we know that of the first. So this reduces the sum to 26 = 64 terms which is still a lot.
We will therefore try to use a more efficient way of evaluating the diagram. This will show
us along the way some tricks one can do like substituting complex diagrammatic structures
inside blobs.

We start by introducing a new vector y = (y1, y2) together with its graphical representation
and write

as a definition of the y-dependent quadratic form Q in the x variables. The blob of Q is
equal to the part of the picture in the round dotted box. Using the previous section on
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quadratics, we have

= = 2(Q11Q22 −Q2
12) .

We now have the easy calculations with single index contractions:

Q11 = = F111 y1 + F112 y2 = y1

Q22 = = F122 y1 + F222 y2 =
p

3
y1 + qy2
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Q12 = = F112 y1 + F122 y2 =
p

3
y2 .

As a result, we have

= 2

[
y1

(p
3
y1 + qy2

)
−
(p

3
y2

)2]

=
2p

3
y21 + 2qy1y2 −

2p2

9
y22 .

We now trade the y’s for the original x variables, i.e., do the substitution y := x in the
previous equation. This gives

=
2p

3
x21 + 2qx1x2 −

2p2

9
x22 =: H(x)
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which defines the so-called Hessian H(x) of the cubic F . The Hessian also has a graphical
representation

H(x) =

but identifying the blob of H as some encapsulation of a structure made of F ’s requires some
care. We have

where we inserted a symmetrizer (because one side made of x’s is symmetric) at first, so H
is symmetric, only to realize as a second step that here, by accident, the inner F structure
is already symmetric. This is because reversing an ε arrow produces a (−1) factor, and here
we would reverse two arrows which results in no net change.
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Finally, again using the section on quadratics we a have

= = 2(H11H22 −H2
12) .

From the equation above where H(x) was defined we immediately read off the tensor/matrix
entries

H11 =
2p

3
H12 = q

H22 = −2p2

9

which upon substitution in the expression 2(H11H22 −H2
12) and multiplication by −1

8
gives

the expression q2

4
+ p3

27
and proves the proposition. �

Remark 1. The above computations come from 19th century invariant theory, in particular
that of binary (n = 2) forms (homogeneous polynomials). The first fundamental theorem of
classical invariant theory for SL2 says that every polynomial in the coefficients of a form
F which is invariant under linear change of coordinates by an element of SL2 must be a
linear combination of pictures made of F blobs and ε arrows. This generalizes to SLn. Note
also that the entire theory of angular momentum in quantum mechanics can be done with
this kind of graphical calculus. In particular one can write formulas with pictures for SU2

Clebsch-Gordan coefficients 〈j1,m1, j2,m2|J,M〉, but that is another story.

Remark 2. (As per Diana’s question) Discriminants generalize to higher dimensions. If
F1(x), . . . , Fn(x) are n homogeneous polynomials in n variables x1, . . . , xn, of respective de-
grees d1, . . . , dn, then there is a unique polynomial Res(F1, . . . , Fn) in the coefficients of
F1, . . . , Fn which satisfies the following properties.

(1) Res(F1, . . . , Fn) = 0 iff ∃x ∈ Cn\{0},∀i ∈ [n], Fi(x) = 0.
(2) ∀i ∈ [n], Res(F1, . . . , Fn) is homogeneous of degree

∏
j 6=i dj in the coefficients of Fi.

(3) Res(F1, . . . , Fn) = 1 when F1(x) = xd11 , . . . , Fn(x) = xdnn (the “diagonal case”).

This is called the (multidimensional) resultant. If (d1, . . . , dn) = (1, . . . , 1) then the resultant
is just the determinant of the matrix formed by the coefficients of the linear forms F1, . . . , Fn.
Now if H(x) is a homogeneous polynomial of degree d in n variables, one can define Fi = ∂H

∂xi
and then take the resultant of these Fi’s. By definition, this is the discriminant of H, and

12



it detects if the hypersurface {H(x) = 0} is singular (discriminant is zero) or smooth (dis-
criminant is nonzero). The case n = 2 corresponds to hypersurfaces in a space of dimension
1, which are just collections of points with possible multiplicities. Smooth means the points
are distinct, while singular means there are point/root collisions. This puts the elementary
∆2 = b2 − 4ac under the same roof as much deeper and more complicated objects, i.e.,
discriminants of hypersurfaces in arbitrary dimension.
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