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ABDELMALEK ABDESSELAM

Some proofs about trees:
We now revisit the material from Lecture 6 and add proofs of some of the results therein,

obtained solely from the given definition (Definition 3 from Lecture 6).
The main tool we will need is the following inductive structural lemma.

Lemma 1. Let T be a tree on a set V with |V | ≥ 2 and let v∗ ∈ V . Then there exist k ≥ 1,
and subsets V1, . . . , Vk of V and vertices v1, . . . , vk in V such that all the following properties
hold.

(1) ∀i ∈ [k], vi ∈ Vi.
(2) ∀i, j ∈ [k], i 6= j → Vi ∩ Vj = ∅.
(3) V1 ∪ · · · ∪ Vk = V \{v∗}.
(4) For all i ∈ [k], Ti := T ∩P(Vi) is a tree on Vi.
(5) The 2k subsets of V (2) given by {{v∗, v1}},. . . , {{v∗, vk}}, and T1, . . . , Tk are pairwise

disjoint and their union is T .

Proof: Let k := δT (v∗). By Lemma 1 of Lecture 6, we have k ≥ 1. Define the set neighbors

N := {v ∈ V | {v∗, v} ∈ T} ,
and the “star” of v∗

S := {e ∈ T | v∗ ∈ e} .
By definition of the vertex degree, |S| = k. By definition, T ⊂ V (2) and elements of the
latter are subsets of V with exactly two elements. So if {v∗, v} ∈ T , we must have v 6= v∗.
Clearly, the map N → S, v 7→ {v∗, v} is a bijection, and therefore |N | = k. Let us pick a
numbering of the elements of N as v1, . . . , vk. We therefore have that v∗, v1, . . . , vk are all

distinct. Let T̃ := T\S. For each i ∈ [k], let Vi be the connected component of vi for the

graph T̃ on V , so (1) is satisfied by construction.

We now note that the connected component V∗ of v∗ for the graph T̃ is just {v∗}. Indeed, if
some w 6= v∗ was in that connected component, we would have a path v∗ = u0, u1, . . . , up = w

in T̃ , and w 6= v∗ implies p ≥ 1 and thus e := {u0, u1} ∈ T̃ ⊂ T . Since v∗ = u0 ∈ e, we have

e ∈ S, but this contradicts e ∈ T̃ = T\S. Hence V∗ = {v∗} is established. Since for all i,
vi 6= v∗, we have that vi is not in V∗ and therefore v∗ is not in Vi, by the symmetry property
of equivalence relations. This proves V1 ∪ · · · ∪ Vk ⊂ V \{v∗}. Now let w ∈ V \{v∗}. Since T
is a tree, it connects v∗ to w. Consider a path of minimal length v∗ = u0, u1, . . . , up = w in
T with necessarily p ≥ 1 and all vertices u0, . . . , up being distinct. Since v∗ ∈ {u0, u1} ∈ T ,
and by definition and property of S and N , there exists i ∈ [k], such that u1 = vi. Since the
u’s are distinct, none of the vertices u1, u2, . . . , up is equal to v∗ and therefore the successive

edges {u`, u`+1}, with 1 ≤ ` < p, do not belong to S, i.e., are in T̃ . Hence u1, . . . , up is a

path in T̃ from vi to w, and therefore w ∈ Vi. This finishes the proof of item (3).
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We now consider i 6= j in [k] and show that vi and vj are not connected by T̃ . Suppose for

the sake of contradiction that there was a path u0 = vi, u1, . . . , up = vj in T̃ . Since i 6= j, we
have vi 6= vj and therefore p ≥ 1. We can also assume the path has minimal length so that
all vertices u0, . . . , up are distinct. Since p ≥ 1, for each ` ∈ [p], we have that at least one

of {u`, u`+1} or {u`−1, u`} makes sense and is in T̃ = T\S. By definition of S, this implies
that u` cannot be equal to v∗. As a result, v∗, u0, u1, . . . , up are all distinct and form a set
of p + 2 ≥ 3 vertices. Since {v∗, u0} = {v∗, vi} ∈ T and {v∗, up} = {v∗, vj} ∈ T , we see that
v∗, u0, u1, . . . , up form a circuit in T which is a contradiction. Clearly, what we showed proves
that the connected components Vi and Vj are distinct and therefore disjoint, and item (2)
has been established.

Let i ∈ [k], and recall that Ti is by definition the set of edges (unordered pairs of two
vertices) which belong to T and which also are contained in Vi. Clearly, Ti can have no
circuit (definition relative to the set of vertices Vi) because this would also be a circuit for T
(definition relative to the vertex set V ). Let w ∈ Vi and consider a path u0 = vi, u1, . . . , up =

w in T̃ . Then for all ` ≥ 0, u0, . . . , u` is a path in T̃ from vi to u`. Hence, u` is in the
connected component Vi. As a result, for all `, with 1 ≤ ` < p, we have {u`, u`+1} ⊂ Vi
and therefore {u`, u`+1} ∈ Ti. This shows that the graph Ti on Vi 6= ∅ is connected. We
completed the proof of item (4).

We will now prove item (5). Note that if i, j ∈ [k] and i 6= j, then vi 6= vj and therefore
{v∗, vi} 6= {v∗, vj}. This shows that the sets {{v∗, vi}}, 1 ≤ i ≤ k, are pairwise disjoint.
Moreover, we clearly have S = ∪ki=1{{v∗, vi}}.

Let {v, w} ∈ Ti, for some i ∈ [k], so in particular we have v 6= w, and v, w ∈ Vi, as well
as {v, w} ∈ T . Since v∗ /∈ Vi, then v, w are different from v∗ and {v, w} /∈ S. This shows

the inclusion ∪ki=1Ti ⊂ T̃ , and also shows that for all i, j ∈ [k], {{v∗, vi}} ∩ Tj = ∅, because

S ∩ T̃ = ∅ by definition of T̃ as the complement of S in T . Now let i, j ∈ [k] with i 6= j, and
suppose e ∈ Ti ∩ Tj. Then we would have e ∈P(Vi) ∩P(Vj), i.e., e ⊂ Vi and e ⊂ Vj. This
would imply e ⊂ Vi ∩ Vj = ∅, by (2) which contradicts |e| = 2 coming from e ∈ T ⊂ V (2).
We now completed the proof of pairwise disjointness for all 2k subsets involved.

What remains is to show the inclusion T̃ ⊂ ∪ki=1Ti. Let e = {v, w} ∈ T̃ . Since e /∈ S, we
have v 6= v∗ and w 6= v∗. By (3), there exist i, j ∈ [k] such that v ∈ Vi and w ∈ Vj. Since

{v, w} ∈ T̃ , the vertices v, w are connected by the graph T̃ on V , and they must then be in
the same connected component. So we must have Vi = Vj and thus i = j by item (2). Since

both v, w are in Vi and {v, w} ∈ T̃ ⊂ T , we also have {v, w} ∈ Ti. So the needed inclusion
is proved and therefore so is item (5) and the lemma. �

Proof of Proposition 1 from Lecture 6: We use induction on |V |. If |V | = 1, then
T ⊂ V (2) = ∅ so the equality trivially holds. Now suppose |V | ≥ 2 and pick some element v∗
in V , in order to invoke Lemma 1. From item (5) of the lemma and the induction hypothesis,
we immediately get

|T | = k + |T1|+ · · ·+ |Tk| ,
= k + (|V1| − 1) + · · ·+ (|Vk| − 1) ,

and the RHS of the last equation clearly reduces to |V \{v∗}| = |V | − 1. �

For the purpose of tree counting, we will need a converse to Lemma 1.
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Lemma 2. Let V be a finite set with |V | ≥ 2 and let v∗ be an element of V . Let k ∈ Z>0, and
let V1, . . . , Vk be nonempty, pairwise disjoint subsets of V whose union is equal to V \{v∗}.
Let v1, . . . , vk be elements of V such that ∀i ∈ [k], vi ∈ Vi. Let T1, . . . , Tk be trees on V1, . . . , Vk
respectively. Then,

T := {{v∗, vi} | i ∈ [k]} ∪
(
∪ki=1Ti

)
is a tree on V .

Exercise 1. Prove the last lemma.

The following lemma is not earth-shattering, but does not cost much to state and prove.
It says: trees have leaves.

Lemma 3. Let T be a tree on a set V with |V | ≥ 2. Then there exists at least two vertices
v in V with δT (v) = 1.

Proof: Let VL := {v ∈ V | δT (v) = 1}. By Lemma 1 of Lecture 6, all vertices have degree at
least 1. So if v ∈ V \VL, we must have δT (v) ≥ 2. This remark, with the help of Proposition
2 of Lecture 6, implies

2|V | − 2 =
∑
v∈V

δT (v) ≥ |VL|+ 2(|V | − |VL|) ,

from which |VL| ≥ 2 trivially follows. �

We also have the following purely numerical variant of the previous lemma.

Lemma 4. Let V be a finite set with |V | ≥ 2 and let (dv)v∈VZV>0 be such that
∑

v∈V dv =
2|V | − 2. Then there exists at least two elements v in V with dv = 1.

Proof: Define VL := {v ∈ V | dv = 1} and repeat the previous proof. �

Of course, it would have been quicker to prove Lemma 3 as a corollary of Lemma 4, but
one could argue this order of presentation is more intuitive/inevitable.

Proof of Theorem 1 of Lecture 6: First suppose n = 2. From the hypothesis ∀v ∈
V, dv ≥ 1 and

∑
v∈V dv = 2n− 2 = 2 we get ∀v ∈ V, dv = 1. So the RHS of Cayley’s formula

reduces in this particular case to

(n− 2)!∏
v∈V (dv − 1)!

= 1 .

A tree T on V must be such that |T | = n − 1 = 1 while T is contained in V (2) which is a
singleton. Therefore there is exactly only one tree on V , namely T = V (2). So the theorem
holds for n = 2. We then proceed by induction on n, and let us now assume n ≥ 3. By
Lemma 4, one can pick some v∗ ∈ V such that dv∗ = 1. A tree T satisfying the vertex-
degree conditions must be so that δT (v∗) = 1 and therefore, when invoking Lemma 1 and its
notations, the following should happen. We must have k = 1. There is only one vertex v1,
set V1 and tree T1. We therefore condition the count, i.e., summing the term 1 over trees T ,
according to the value of v1 ∈ V1 = V \{v∗}. For given fixed v1, the tree T1 = T ∩P(V1) on
V1 must have the following vertex degrees:

∀w ∈ V1\{v1}, δT1(w) = δT (w) = dw ,
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and
δT1(v1) = δT (v1)− 1 = dv1 − 1 ,

since the edge of T joining v1 back to the root v∗ is not included in T1. Note that, thanks
to Lemmas 1 and 2, there is a bijection between trees T with fixed v1 and trees T1 on
V1, with degrees specified by dw for w 6= v1 and dv1 − 1 when w = v1. We indeed have
T1 = T ∩P(V \{v∗}) while the inverse map is given by T = T1 ∪ {v∗, v1}. Also note that
we must have dv1 ≥ 2. Otherwise, v∗ and v1 would be disconnected from the rest which is
nonempty since n ≥ 3. Putting all this together, and using the induction hypothesis, we
have ∑

T

1l{∀v ∈ V, δT (v) = dv}

=
∑

v1∈V \{v∗},dv1≥2

∑
T

1l{∀v ∈ V, δT (v) = dv} × 1l{{v∗, v1} ∈ T}

=
∑

v1∈V \{v∗},dv1≥2

∑
T1

1l{δT1(v1) = dv1 − 1, and ∀v ∈ V \{v∗, v1}, δT1(v) = dv}

=
∑

v1∈V \{v∗},dv1≥2

(n− 3)!

(dv1 − 2)!×
∏

v∈V \{v∗,v1}(dv − 1)!

=
(n− 3)!

(dv∗ − 1)!× (dv1 − 1)!×
∏

v∈V \{v∗,v1}(dv − 1)!
×

∑
v1∈V \{v∗},dv1≥2

(dv1 − 1)

=
(n− 3)!∏
v∈V (dv − 1)!

×
∑

v1∈V \{v∗},dv1≥2

(dv1 − 1)

=
(n− 3)!∏
v∈V (dv − 1)!

×
∑
v∈V

(dv1 − 1)

=
(n− 3)!∏
v∈V (dv − 1)!

× [(2n− 2)− n]

=
(n− 2)!∏
v∈V (dv − 1)!

,

which completes the inductive proof. �

Discrete geodesics:
As in differential geometry, where geodesics (locally) correspond to shortest paths, we

have a similar notion in trees. The following proposition is intuitively obvious, and its proof
will ring a bell for anyone who had to fix a separated zipper.

Proposition 1. Let T be a tree on a set V and let a, b ∈ V . Then, there exists a unique
path of minimal length from a to b.

Proof: Let k = dT (a, b), then there exists such a path a = v0, v1, . . . , vk = b because T
is a connected graph. We also noted earlier that such a minimal path must be such that
v0, . . . , vk are all distinct. If a = b, then k = 0 and the minimal path is clearly unique given
by the vertex sequence (v0) with v0 = a = b. Suppose now that a 6= b, and suppose that
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a = v0, v1, . . . , vk = b and a = w0, v1, . . . , wk = b are two different minimal paths from a to
b in the tree T . Since the paths are different, we have k ≥ 2 and ∃i, 1 < i < k, such that
vi 6= wi. Pick the smallest such i, which will give us the additional information vi−1 = wi−1.
Let R := {vi+1, vi+2, . . . , vk}. Since k > i satisfies vk = wk = b, the set of j’s such that
i < j ≤ k and wj ∈ R is nonempty. We then pick the smallest such j. We then define `,
i < ` ≤ k as the unique index such that v` = wj. It is then easy to see that the vertices
vi−1, vi, . . . , v`, wj−1, wj−2, . . . , wi are all distinct and form, in this order, a circuit. Since T
is a tree, this is a contradiction. Hence, there cannot be two different minimal paths. �

The above makes a bit more precise the notion of shortest path between two vertices in a
tree, with respect to the graph distance. These are discrete analogues of geodesics.

Remark 1. (for those who took differential and Riemannian geometry) A tree is analogous
to a hyperbolic space. If a, b, c are three distinct points, the two geodesics a → b, a → c
stay close to each other at first (in fact coincide) and then diverge from each other. This
is similar to the behavior of geodesics in hyperbolic spaces (with negative curvature) like the
Lobachevsky/Poincaré disc {z ∈ C | |z| < 1} or upper half-plane {z ∈ C | Im(z) > 0}.

The parent function:
The following proposition defines the parent function on the tree.

Proposition 2. Let T be a tree on a set V and let v∗ ∈ V which we will call the root. Then
there exists a unique function P : V \{v∗} → V , such that:

(1) ∀v ∈ V \{v∗}, {v, P (v)} ∈ T ,
(2) ∀v ∈ V \{v∗}, dT (v∗, P (v)) = dT (v∗, v)− 1.

The proof is easy. The existence can be done by letting P (v) = v1 if v = v0, v1, . . . , vk = v∗
is the minimal length path from v to v∗.

The formal definition of the tree amplitudes:
We can now give a more formal definition of the tree amplitudes Ai(T ) from Lecture 7.

We reuse the notations from that lecture. Firstly, we generalize the evaluation Qi,j,k of the
Q tensors. Let A be a finite set with |A| = 2, and let J : A→ [n]. Finally, let i ∈ [n]. Then,
by definition, we let

Qi,J := Qi,J(a1),J(a2) ,

if A = {a1, a2}. This is not ambiguous because the tensor is symmetric in its last two indices.
Namely, if we took the other numbering of the elements of A which exchanges a1 and a2, we
would still get the same result

Qi,J(a2),J(a1) = Qi,J(a1),J(a2) .

Given a tree T on Vm,` with the vertex degree conditions imposed in Lecture 7, we let
v∗ = 1 ∈ V R

m,` and denote the corresponding parent function by P . We can now state

Ai(T ) :=
∑

J∈[n]V
R
m,`
∪V L

m,`

δi,J(P−1(1)) ×

 ∏
a∈V I

m,`

QJ(a),J |P−1({a})

×
 ∏
b∈V L

m,`

yJ(b)

 ,

where J |A means the restriction to a set A .
5



Exercise 2. Prove that the series over trees gi(Y ) from Eq. (2) in Lecture 7 is indeed the
solution of the inversion problem given by Eq. (1) of the same lecture. Namely, show that
gi(Y ) = Yi + 1

2
Qi(g(Y )), by separating the m = 0 term which gives Yi from the rest of the

sum. See [1] for more details.

Exercise 3. Write an explicit series expansion in terms of trees (this time without having the
vertex degree 3 or 1 restriction) for the inversion problem considered in Lecture 4, Theorem
1, in the case where hk(Y ) := Yk, and L = I. The key is to abandon the sum of monomials
point of view and work with tensors. Namely, the formal power series

fk =
∑
α∈Nn

fk,αX
α

should be rewritten

fk = Xk +
∞∑
d=2

1

d!

∑
j1,...,jd∈[n]

F
(d)
k;j1,...,jd

Xj1Xj2 · · ·Xjd .

For the relation between the fk,α monomial coefficients and the F
(d)
k;j1,...,jd

tensor elements for
the degree d homogeneous part of the power series, see Lecture 5. Finaly, see what changes
if one allows a linear part given by a general invertible matrix L. What happens also if the
hk are more general. For more details, see [2].
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GAUSSIAN INTEGRALS

A important tool we will need in order to introduce perturbation theory and its organi-
zation in terms of Feynman diagrams, is a general formula for integrating monomials with
respect to a Gaussian measure. Let A be a n × n real symmetric positive definite matrix.
Let p ∈ N and let i1, . . . , ip be in [n]. We want to compute the integral∫

Rn

xi1 · · ·xip e−
1
2
xTAx dnx .

Note that even if we loosely write x = (x1, . . . , xn) we still think of x as a column vector so
that the matrix product xTAx is meaningful and gives a number. We first show that the
integral converges (Exercise 2 from Lecture 1). Let µ ∈ Nn be the multiplicity multiindex of
the sequence of indices i1, . . . , ip. After putting absolute values, the integral becomes

B :=

∫
Rn

|x1|µ1 · · · |xn|µn e−
1
2
xTAx dnx .

Note that for any real number u ≥ 0, we have the (elementary yet quite powerful) bound

un

n!
≤ eu ,

because a term is bounded by the series, if all terms are nonnegative. Pick some ε > 0.
Then, for any j ∈ [n], letting u = ε|xj| and n = µj, we get

|xj|µj ≤ ε−µjµj!e
ε|xj | .

Since A is positive definite, there exists η > 0 such that all eigenvalues of A are bounded
below by η. Therefore xTAx ≥ ηxTx for all x ∈ Rn. As a result, using our previous notations
for multiindices, we have the bound

B ≤ ε−|µ|µ!

∫
Rn

dnx exp

(
−1

2
ηxTx+

n∑
i=1

ε|xj|

)

= ε−|µ|µ!

(∫ ∞
−∞

e−
y2

2
+ε|y|dy

)n
.

The one dimensional integrals over y are obviously finite, so B <∞, and the original integral
converges.

Theorem 1. (Isserlis-Wick) We have the identity∫
Rn

xi1 · · ·xip e−
1
2
xTAx dnx =

(2π)
n
2√

det(A)

∑
P

∏
{a,b}∈P

A−1ia,ib

where the sum is over all perfect matchings of the set [p] (see Lecture 2 for the definition and
notations).

For the proof see the next lecture.

Remark 2. The above theorem about Gaussian integrals is due to Leon Isserlis [4]. Note
that in the physics literature, this is called Wick’s Theorem and is a workhorse of pertur-
bation theory of QFT, in the path integral formalism developed by Richard Feynman. The
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related version due to Gian Carlo Wick was the analogous version in the canonical quanti-
zation framework [5]. Later, Feynman realized the importance of Gaussian integrals in QFT
perturbation theory computations [3, Appendix C].
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Ann. Henri Poincaré 4 (2003), no. 2, 199–215. https://link.springer.com/article/10.1007/

s00023-003-0127-7

[2] A. Abdesselam. Feynman diagrams in algebraic combinatorics. Sém. Lothar. Combin. 49 (2002/04),
Art. B49c, 45 pp. (electronic). https://www.emis.de/journals/SLC/wpapers/s49abdess.html

[3] R. P. Feynman, An operator calculus having applications in quantum electrodynamics. Phys. Rev. 84
(1951), no. 1, 108–128.

[4] L. Isserlis, On a Formula for the product-moment coefficient of any order of a normal frequency
distribution in any number of variables. Biometrika 12 (1918), 134–139.

[5] G. C. Wick, The evaluation of the collision matrix. Phys. Rev. 80 (1950), no. 2, 268–272.

8

https://link.springer.com/article/10.1007/s00023-003-0127-7
https://link.springer.com/article/10.1007/s00023-003-0127-7
https://www.emis.de/journals/SLC/wpapers/s49abdess.html

	References

