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Proof of the Isserlis-Wick Theorem:
For convenience, we will modify our notations and write A(i, j) instead of Ai,j for matrix

elements. Likewise, a component of the vectorial integration variable x will be denoted x(i)
instead of xi. Our goal is to prove

∫
Rn

dnx x(i1) · · · x(ip) e
− 1

2
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n
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A−1(ia, ib) , (1)

where the sum is over perfect matchings P of the set [p], namely, set partitions with only
blocks of size 2. We first note that the theorem holds if p is odd. Indeed, in this case, the
LHS of (1) vanishes as can be seen from the change of variables x → −x. The RHS also
vanishes since the sum over P is empty. We now focus on the case where p is even.

Suppose A = RTBR where R ∈ O(n), the group of orthogonal matrices with real entries.
Then B also must be real symmetric and positive definite. It should have the same eigen-
values as A, and also the same determinant. We will show that if the theorem holds for B
(for all choices of indices) then it must also hold for A.

We do the change of variables x = R−1y, with Jacobian equal to |det(R−1)| = 1 because
R is orthogonal. We then get, referring to the left-hand side of (1),

LHS =

∫
Rn

dny

p∏
c=1

(
n∑

jc=1

R−1(ic, jc)y(jc)

)
e−

1
2
yTBy

=
n∑

j1,...,jp=1

(
p∏
c=1

R−1(ic, jc)

)∫
Rn

dny y(j1) · · · y(jp) e
− 1

2
yTBy

=
n∑

j1,...,jp=1

(
p∏
c=1

R−1(ic, jc)

)
(2π)

n
2√

det(B)

∑
P

∏
{a,b}∈P

B−1(ja, jb)

=
(2π)

n
2√

det(A)

n∑
j1,...,jp=1

∑
P

(
p∏
c=1

R−1(ic, jc)

) ∏
{a,b}∈P

B−1(ja, jb)

=
(2π)

n
2√

det(A)

∑
P

n∑
j1,...,jp=1

(
p∏
c=1

R−1(ic, jc)

) ∏
{a,b}∈P

B−1(ja, jb)

1



=
(2π)

n
2√

det(A)

∑
P

n∑
j1,...,jp=1

∏
{a,b}∈P

(
R−1(ia, ja)B

−1(ja, jb)R
−1(ib, jb)

)
=

(2π)
n
2√

det(A)

∑
P

∏
{a,b}∈P

(
n∑

ja,jb=1

R−1(ia, ja)B
−1(ja, jb)R

−1(ib, jb)

)

=
(2π)

n
2√

det(A)

∑
P

∏
{a,b}∈P

A−1(ia, ib) .

In going from the 2nd to the 3rd line, we used the hypothesis that B satisfies (1) for all
assignments of the indices. From the 3rd to the 4th line, we used det(B) = det(A) and put
the R−1 factors inside the inner sum. We then used the discrete Fubini Theorem to exchange
sums over the partition P and over the j indices. From the 5th to the 6th line, we used the
fact P is a set partition of [p], in order to write a product over [p] as a product, over blocks of
P , of subproducts within these blocks. Then we undid the expansion of a product of sums.
Finally, we used the matrix equation R−1B−1(R−1)T = RTB−1R = A−1 since R−1 = RT.

By the spectral theorem for real symmetric matrices and the claim just proved, the the-
orem reduces to the case where A is a diagonal matrix with diagonal entries given by say
λ1, . . . , λn > 0. In this case,
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where µ = (µ1, . . . , µn) denotes the multiplicity multiindex µ(i1, . . . , ip), and we used Fubini’s
Theorem.

One the other hand, the right-hand side of (1) is now given by
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by an easy inversion of a diagonal matrix. It is more advantageous to use the condition

ia = ib enforced by the indicator, in order to split the factor λ−1
ia

evenly as λ
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For 1 ≤ j ≤ n, let Vj := {c ∈ [p] | ic = j} which has cardinality µj. The sum∑
P

∏
{a,b}∈P

1l{ia = ib}

is the number of perfect matchings on [p] with the additional constraint of respecting the
V1, . . . , Vn division into compartments, i.e., P ’s which satisfy

∀{a, b} ∈ P, ∃j ∈ [n], {a, b} ⊂ Vj .

Clearly, choosing such P ’s amounts to choosing perfect matchings in each Vj, independently.
Therefore,

∑
P
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2
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(µj
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)
!
.

Note that, as in measure theory when dealing with functions defined almost everywhere, the
writing in the last equation could appear sloppy, but it is not really a problem. While the
factorial of

µj
2

could be problematic if µj is odd, we don’t have to bother defining/assigning
a value for it because the preceding indicator makes the whole thing zero anyways. As a
result, we have
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So the the equality LHS = RHS reduces to showing that, for all j ∈ [n], we have∫
R
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which is the one-dimensional case of the theorem. The latter is left as an easy exercise on
calculations with the Euler Gamma function. �

We will typically denote the inverse matrix A−1, which plays the lead role in the Isserlis-
Wick Theorem, by C and will call it the (free Euclidean) propagator. Note that when p
is even, and with the help of Eq. (3) of Lecture 2 and the graphical calculus developed
in Lectures 4 and 5, the result of the evaluation of the Gaussian integral delivered by the
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theorem can be written as

p!

2
p
2

(
p
2

)
!
× (2)

where the box is a symmetrizer of size p and we represented the symmetric tensor with two
indices C with a round blob.

The intended application to QFT perturbation theory:
Recall from Lecture 2, that we want to study the limits

Cn(f1, . . . , fn) = lim
r→−∞

lim
s→∞

CU
n,r,s(f1, . . . , fn)

CU
0,r,s

where f1, . . . , fn are test functions in Schwartz space S (Rd). The unnormalized correlations
are

CU
n,r,s(f1, . . . , fn) :=

∫
RΛr,s

∏
x∈Λr,s

dφ(x)
n∏
j=1

 ∑
yj∈Λr,s

Ldrfj(yj)φ(yj)

 × exp (−Sr,s(φ)) ,

where the full Euclidean action functional is

Sr,s(φ) :=
∑
x∈Λr,s

Ldr

[
ar,s
2

d∑
i=1

(
φ(x+ Lrei)− φ(x)

Lr

)2

+
m2
r,s

2
φ(x)2 +

λr,s
24

φ(x)4

]
.

Again recall that Λr,s is the finite set (LrZ)d ∩
[
−Ls

2
, L

s

2

]d
seen as a subset of Rd, but also

identified with the additive group (LrZ)d/(LsZ)d in order to make sense of expressions such
as x+ Lrei, since we are imposing periodic boundary conditions.
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In order to proceed, we split the parameters as a free part plus and interaction or pertur-
bation part:

m2
r,s = m2 + δm2

r,s ,

ar,s = 1 + δar,s ,

λr,s = 0 + λr,s .

This results in a splitting Sr,s(φ) = SG
r,s(φ) + δSr,s(φ) of the action into a free or Gaussian

part

SG
r,s(φ) :=

∑
x∈Λr,s

Ldr

[
1

2
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i=1

(
φ(x+ Lrei)− φ(x)

Lr

)2

+
m2

2
φ(x)2

]
,

and an interaction or perturbation part

δSr,s(φ) :=
∑
x∈Λr,s

Ldr

[
δar,s

2

d∑
i=1

(
φ(x+ Lrei)− φ(x)

Lr

)2

+
δm2

r,s

2
φ(x)2 +

λr,s
24

φ(x)4

]
.

The idea is to keep exp(−SG
r,s(φ)) while completely expanding the exponential of −δSr,s(φ).

The latter is a sum of homogeneous polynomials which can be represented graphically with
appropriate blobs as in Lecture 5. One will then have an infinite sum of Gaussian integrals
which can be computed using the Isserlis-Wick Theorem. This series expansion method
applied to the unnormalized correlations is called perturbation theory in QFT. As can be
seen from (2), the result will be an infinite sum of evaluations of tensor diagrams. The
proper handling of such sums, and in particular the issue of accurate computation of so-
called symmetry factors of Feynman diagrams, will require a higher level of sophistication
and abstraction, as compared to our previous treatment of the tree diagrams featuring in the
problem of power series inversion from Lectures 6 and 7. Namely, we will need the theory of
combinatorial species introduced by André Joyal [3, 1]), formulated using category theory.
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A BRIEF INTRODUCTION TO CATEGORY THEORY

Category theory is an important area of mathematics. In some situations, it provides
the very objects of study, while in others it also serves as a language and way to organize
one’s thoughts. Even in apparently remote areas, e.g., in analysis, when building a theory,
introducing new concepts and definitions, it is helpful to do so while wearing category-
theoretic pairs of glasses, in order for the theory one is buiding to be most harmonious and
effective. For the physics students in this course, the use of categories may seem intimidating
and perhaps too much leaning towards abstraction. It is however useful in developing physical
theories too, e.g., for the study [2] of the O(N) model of statistical mechanics and N -
component φ4 models for exotic values of N which are not in Z>0. We will only explore the
bare minimum of category theory: the notions of category, (covariant) functor, and natural
transformation or morphism of functors.

By definition, a category C is made of the following data:

(1) a collection of objects Ob(C),
(2) for any objects X, Y ∈ Ob(C), a set Hom(X, Y ) called the set of morphisms or arrows

from X to Y ,
(3) for any objects X, Y, Z ∈ Ob(C), a map

◦ : Hom(Y, Z)× Hom(X, Y ) −→ Hom(X,Z)

called a composition operation,
(4) for each object X ∈ Ob(C), a choice of an element 1X in Hom(X,X) called the

identity morphism of X.

If needed, like when there are several categories around in the discussion, we will write
HomA(X, Y ) instead of just Hom(X, Y ), in order to avoid any ambiguity. As part of the
definition of a category, the previous data must satisfy the following properties or axioms.

(1) The composition is associative, namely, for all objects X, Y, Z, U ∈ Ob(C), and for
all morphisms f ∈ Hom(X, Y ), g ∈ Hom(Y, Z), and h ∈ Hom(Z,U), we have

(h ◦ g) ◦ f = h ◦ (g ◦ f) .

(2) The identity morphisms behave like neutral elements, namely, for all objects X, Y ∈
Ob(C), and for all morphism f ∈ Hom(X, Y ), we have

1Y ◦ f = f and f ◦ 1X = f .

Example 1. The category Sets whose objects are sets and whose morphisms are just maps.
Namely, for two sets X, Y , the set of morphisms is Hom(X, Y ) := Y X . The composition is
the usual composition of maps, and identity morphisms are identity maps.

Example 2. The category Vect of vector spaces over some fixed field like R or C. The
objects are vector spaces, and morphisms are given by linear maps.

Example 3. The category Top of topological spaces. The objects are given by topological
spaces (X,T ) where X is set and T ∈P(P(X)) is a topology on X. Morphisms are given
by continuous maps, i.e., maps f : (X,T )→ (X ′,T ′) such that ∀U ′ ∈ T ′, f−1(U ′) ∈ T .
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Example 4. The category Measurable of measurable spaces. The objects are given by mea-
surable spaces (X,M ) made of a set X and a σ-algebra M on X. Morphisms are given by
measurable maps, i.e., maps f : (X,M )→ (X ′,M ′) such that ∀A′ ∈M ′, f−1(A′) ∈M .

Example 5. The category Grp of groups with objects given by groups and morphisms given
by group homomorphisms, i.e., maps ϕ : G → H between groups, such that ∀g1, g2 ∈ G,
ϕ(g1g2) = ϕ(g1)ϕ(g2).

Example 6. The category MetCont of metric spaces with continuous maps. Objects are
metric spaces (X, d) where X is a set and d is a metric or distance on X. Continuity is with
respect to the topologies defined by these distance functions.

Example 7. The category MetLip of metric spaces with morphisms given by maps which
are Lipschitz. Namely, a map f : (X, d) → (X ′, d′) qualifies as a morphism iff ∃K ≥ 0,
∀x1, x2 ∈ X, d′(f(x1), f(x2)) ≤ K d(x1, x2).

Example 8. The category MetUnif of metric spaces with morphisms given by uniformly
continuous maps. Namely, these are maps f : (X, d)→ (X ′, d′) such that

∀η > 0,∃ε > 0,∀x1, x2 ∈ X, (d(x1, x2) < ε =⇒ d′(f(x1), f(x2)) < η) .

The above should give some intuition for what a category is, but, of course, the list is
endless. Note that one can also mix and match.

Example 9. The category TopVectR of topological vector spaces over R. The objects are
topological vector spaces over R (see notes on distributions). The morphisms are given by
maps which are, at the same time, linear and continuous.

Example 10. The category TopGrp of topological groups. Objects are topological groups and
morphisms are given by continuous group homomorphisms. A topological group G is a group
equipped with a topology, such that the maps G×G→ G, (g, h) 7→ gh and G→ G, g 7→ g−1

are continuous. It is implicit in the last statement that G×G is given the product topology
of the given topology of G on each of the two factors.

For our main concern which is perturbation theory based on Feynman diagrams, the main
categories we will use are the ones in the next two examples.

Example 11. The category Fin of finite sets and all maps. Objects are finite sets. Morphisms
are just arbitrary maps.

Example 12. The category FinBij of finite sets with bijections. Object are arbitrary finite
sets, but morphisms are given by bijective maps only.

The next notion of we will need is that of (covariant) functor between two categories. If
A and B are categories, a covariant functor or simply functor F from A to B is given by the
following data. To each object A in category A, we associate an object F (A) in category B.
We also have, for each objects A,A′ in category A, a map

HomA(A,A′) −→ HomB(F (A),F (A′))
f 7−→ F [f ] .

These must satisfy the following axioms.
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(1) For all objects A,A′, A′′ ∈ Ob(A), and for all morphisms f ∈ HomA(A,A′) and
g ∈ HomA(A′, A′′), we have

F [g ◦ f ] = F [g] ◦F [f ] ,

with composition understood in the context of category B.
(2) For all object A ∈ Ob(A), we have

F [1A] = 1F (A) .

Note that if, in the first axiom, we had the reversed composition F [f ]◦F [g] on the right-
hand side, then this would define a contravariant functor. In that case, for f ∈ HomA(A,A′),
its counterpart F [f ] would, by definition, be in HomA(F (A′),F (A)). We will not use these
contravariant functors, so from now on our functors will be covariant and we will just say
“functor”.

Example 13. One has a natural forgetful functor from Grp to Sets which to given a group
G simply associates the underlying set G. To a group homomorphism, we associate itself
simply seen as a map. Of course, one can construct tons of similar forgetful functors, by
deciding to drop some of the structure at our disposal.

Example 14. (for those who took measure theory) One has a functor B from Top to
Measurable. If (X,T ) is a topological space, we associate to it the measurable space given by
X together with the Borel σ-algebra B(T ) defined by the topology T , namely, the smallest
σ-algebra on X which contains T . To a continuous map f we associate B[f ] := f itself.
We can do that because continuous maps are measurable, between the respective Borel σ-
algebras. It is common in measure theory to work with LR the set of Lebesgue-measurable
sets in R, which is much bigger than BR the set of Borel subsets of R. This is done using
the notion of completion of measures. One can argue that this is counterproductive and cre-
ates more problems than it solves, despite the apparent gain in generality, i.e., being able to
integrate more (Lebesgue-measurable) functions. Even composition by a continuous function
does not preserve being a Lebesgue-measurable map. So this procedure destroys the “func-
torial” properties which make B into a nice functor from topological spaces to measurable
spaces.

Example 15. (for those who took some topology) Let Top∗ denote the category of topological
spaces with choice of base point. Objects are pairs (X, x0) where X is a topological space
and x0 is a point in/element of X, called a base point. Morphisms from (X, x0) to (Y, y0)
are continuous maps f : X → Y such that f(x0) = y0. By taking continuous loops based at
x0, i.e., continuous maps γ : [0, 1] → X such that γ(0) = γ(1) = x0, up to homotopy, i.e.,
continuous deformation, we get a set of equivalence classes π1(X, x0). One can compose such
loops by concatenation or going through them in succession. This give a group structure, so
π1(X, x0) is called the fundamental group. This construction provides a functor (less trivial
than the previous examples) from the category Top∗ to the category Grp.

Remark 1. (Thanks to Walker for information relevant to this remark, and the pointer
to the reference by Shulman) Category theory poses some set-theoretic issues. The famous
Russell Paradox about the set of all sets which do not contain themselves (modeled after the
liar’s paradox) shows that there is no set of all sets and therefore Ob(Sets) is not a set. For
most categories that are used in mathematics, the collection of objects is not a set. When we
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wrote statements like “A ∈ Ob(A)”, this is not to be taken literally as membership in a set,
but just as a quick way of saying that A is an object of category A. When discussing functors,
it is all right to think intuitively of the assignment A 7→ F (A) as a “map” from Ob(A) to
Ob(B). However, strictly speaking, maps are between sets. Finally, note our generous use
of the word “collection”, a rather vague term, when talking about things like Ob(A), because
of these set-theoretic issues. There are essentially two ways of dealing with these issues with
Bourbaki-grade mathematical rigor, and both imply abandoning ZFC (the Zermelo-Fraenkel
axioms plus AC, the axiom of choice), the standard axiomatic framework for most of the
mathematical literature. One can switch to NBG or the von Neumann-Bernays-Gödel system
of axioms which, in addition to sets, considers classes which are not sets. Such classes can
then be used to talk about things like Ob(A). Another possibility is to work in ZFC+U, i.e.,
adding the axiom about the existence of a Grothendieck Universe (sometimes one needs two
of those). In this course, we will ignore such set-theoretic technicalities and refer to [4] for
more details about them. The sets we will ultimately/effectively use in the following lectures
are quite small: they will be at most countable. One can read the theorems and proofs while
ignoring set-theoretic issues, and then later go over these proofs and see how to modify the
categories involved so all the discussion can take place in a manageable context like the set
of all finite subsets of a fixed set (an alphabet) that is rich enough for our purposes, like say
N. Finally, note that the chosen philosophy in this course is to only use ZF+DC, i.e., we
only need the more concrete/intuitive axiom of (countable) dependent choice rather than the
full-fledged axiom of choice. So going to ZFC+U is not an option for us.
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