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Euclidean QFT and Probability:

In QFT textbooks, one finds correlation functions given by
Euclidean path integrals

〈φ(x1) · · ·φ(xn)〉 =
1

Z

∫
φ(x1) · · ·φ(xn) e−S(φ) Dφ

where the integration variable is a “function” φ : Rd → R,
S(φ) is a functional:

S(φ) =

∫
Rd

{
1

2
(∂φ)2(x) +

1

2
m2φ2(x) + gφ4(x)

}
ddx

and Z =
∫

e−S(φ) Dφ is a normalization constant.

One also finds correlations 〈O1(x1) · · · On(xn)〉 involving
composite operators O(x) such as φ2(x), φ∂µ∂νφ(x), etc.
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Fundamental questions:
Should one take seriously the probabilistic interpretation of the
elementary field φ as a random (possibly generalized) function?
Does the same hold for composite fields O? Are they given by
deterministic local functionals of the elementary field?

Answer: a cautious Yes.

Evidence: For the elementary field: constructions of P(φ)2

(Nelson, Glimm-Jaffe 70’s), φ4
3 (most recently

Gubinelli-Hofmanová 2018), 2d Ising CFT (Dubedat 2011,
Chelkak, Hongler, Izyurov, Camia, Garban, Newman 2015).
For composite fields: theories of regularity structures (Hairer
2014), paracontrolled distributions (Gubinelli, Imkeller,
Perkowski 2015), and result in:
(AA2016) “A second-quantized Kolmogorov-Chentsov
theorem”, arXiv:1604.05259[math.PR]. The subject of this
talk.
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Natural probability space for fields φ, O, is the space of
temperate distributions S ′(Rd) with the strong topology.

Gaussian field example: Let C denote the continuous
bilinear form on the Schwartz space S(Rd) defined by

C (f , g) =
1

(2π)d

∫
Rd

dξ
f̂ (ξ)ĝ(ξ)

|ξ|d−2[φ]

where [φ] ∈ (0,∞) is a parameter called the scaling dimension
of the field φ.
By the Bochner-Minlos Theorem, there is a unique probability
measure P on S ′(Rd) such that

E e iφ(f ) = exp

(
−1

2
C (f , f )

)
for all test functions f ∈ S(Rd).
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Defining the pointwise square “φ2(x)” as a distribution:

Use a mollifier. Take ρ ≥ 0 to be a smooth function with
support in B̄(0, 1) such that

∫
Rd dx ρ(x) = 1. Fix L > 1 and

for, r ∈ Z, define the rescaled function ρr (x) = L−rdρ(L−rx).
The convolution φ ∗ ρr is well defined in a pointwise manner

(φ ∗ ρr )(x) = 〈φ(y), ρr (x − y)〉y .

The result is a function in OM,x(Rd). The UV scale in position
space is ∆x ∼ Lr .
Naive attempt

φ2(f ) = lim
r→−∞

∫
Rd

dx [(φ ∗ ρr )(x)]2 f (x)

does not work but easy to fix using Wick ordering.
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The correct pointwise square : φ2 : is given by

: φ2 : (f ) = lim
r→−∞

∫
Rd

dx
(

[(φ ∗ ρr )(x)]2 − E [(φ ∗ ρr )(x)]2
)
f (x)

with convergence in every Lp(S ′(Rd),Borel,P), p ≥ 1, and
almost surely, provided 0 < [φ] < d

4
, i.e., pointwise correlations

of fields involved are L1,loc.

One also has similar Wick product constructions, under local
integrability conditions, of other local operators built from the
free field φ (Segal JFA 1969, Da Prato, Tubaro 2007).

Technically this is a generalized stochastic process, but one
can make this a measurable map Ω = S ′(Rd)→ S ′(Rd),
φ 7→: φ2 :, which produces the stronger notion of random
distribution.
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When [φ] ∈
(
0, d

2

)
, then one has a pointwise representation for

the covariance C , i.e.,

C (f , g) =

∫
R2d

dx dy 〈φ(x)φ(y)〉 f (x)g(y)

where the pointwise correlation 〈φ(x)φ(y)〉 is defined outside
the diagonal by

〈φ(x)φ(y)〉 =
κ

|x − y |2[φ]

with

κ = π
d
2 × 22[φ] × Γ ([φ])

Γ
(
d
2
− [φ]

) .

For f1, . . . , f4 ∈ S(Rd), then one also has a pointwise
representation for say the fourth moment

E [φ(f1)φ(f2)φ(f3)φ(f4)] =

C (f1, f2)C (f3, f4) + C (f1, f3)C (f2, f4) + C (f1, f4)C (f2, f3)
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Namely,

E [φ(f1)φ(f2)φ(f3)φ(f4)] =

∫
R4d

dx1 dx2 dx3 dx4

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 f1(x1)f2(x2)f3(x3)f4(x4)

featuring the pointwise correlation

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
κ2

|x1 − x2|2[φ]|x3 − x4|2[φ]

+
κ2

|x1 − x3|2[φ]|x2 − x4|2[φ]
+

κ2

|x1 − x4|2[φ]|x2 − x3|2[φ]
.

Pointwise correlations are seen as ordinary functions on the
open subset Confn of Rnd where the points x1, . . . , xn ∈ Rd

are distinct.
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Define (again at non-coinciding points) the new function

〈: φ2 : (x1)φ(x2)φ(x3)〉 =
2κ2

|x1 − x2|2[φ]|x1 − x3|2[φ]
.

Then one has the asymptotic behavior

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =

〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉+ 〈: φ2 : (x2)φ(x3)φ(x4)〉+ o (1)

when x1 → x2 while the three points x2, x3, and x4 are fixed.
This is the simplest instance of Wilson’s Operator Product
Expansion which says that, “inside correlations”, one has

φ(x1)φ(x2) = C1lφφ(x1, x2)× 1 + Cφ
2

φφ(x1, x2) : φ2 : (x2) + o(1)

with OPE coefficients C1lφφ(x1, x2) = κ
|x1−x2|2[φ] and

Cφ
2

φφ(x1, x2) = 1.
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Our theorem shows how in general such an OPE, with precise
bounds on the remainder, allows one to establish convergence
in Lp and almost surely for suitably renormalized products of
random distributions.

We do this in a general setting which can handle Gaussian and
non-Gaussian measures, massive and massless fields,
anomalous scaling dimensions, logarithmic corrections, finite
degeneracy in the dimension spectrum, as well as lack of
translation invariance (e.g., for SPDEs).

But first we need some notation and terminology.
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Assume that we have a collection (OA)A∈B of S ′(Rd)-valued
random variables on some probability space (Ω,F ,P).
Suppose they have moments of all orders, i.e., for all test
function f ∈ S(Rd), all A ∈ B and all p ≥ 1, we have that the
real-valued random variable OA(f ) ∈ Lp(Ω,F ,P).

We also define translates of the rescaled mollifier
ρr ,x(y) = ρr (y − x) for each point x ∈ Rd .

The moments of the given random variables such as

E [OA1(f1) · · · OAn(fn)]

can be seen as continuous n-linear forms on Schwartz space
and also, via the nuclear theorem, as elements of S ′(Rdn).The
pointwise correlations or moments are defined by the limit

〈OA1(x1) · · · OAn(xn)〉 = lim
r→−∞

E [OA1(ρr ,x1) · · · OAn(ρr ,xn)]

if it exists.
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The first main assumption we make is that these pointwise
correlations exist and are smooth functions on the
configuration space Confn.

Furthermore, we require that moments are given by integration
against such pointwise correlations. More precisely, this
includes the local integrability condition∫

Kn∩Confn

dx1 . . . dxn | 〈OA1(x1) · · · OAn(xn)〉 | <∞

for every compact K ⊂ Rd , as well as the condition

E [OA1(f1) · · · OAn(fn)] =∫
Confn

dx1 . . . dxn 〈OA1(x1) · · · OAn(xn)〉 f1(x1) · · · fn(xn)

for all f1, . . . , fn ∈ S(Rd).
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against such pointwise correlations. More precisely, this
includes the local integrability condition∫
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Given these hypotheses it is trivial to define more complicated
pointwise correlations using formal multilinear expansion. For
instance if f (x , y) is a function on Conf2, then

〈 (OA(x)OB(y)− f (x , y)OC (y)) (OD(z)−OE (u)) OF (v) 〉

is to be understood as

〈OA(x)OB(y)OD(z)OF (v)〉
− 〈OA(x)OB(y)OE (u)OF (v)〉
− f (x , y) 〈OC (y)OD(z)OF (v)〉
+ f (x , y) 〈OC (y)OE (u)OF (v)〉

which is a well defined function of (x , y , z , u, v) ∈ Conf5.
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We also assume that for each field OA we are given a number
called the scaling dimension [A] which governs the short
distance singularities on the big diagonal. For instance, we are
requiring that covariance kernels 〈OA(x)OA(y)〉 are bounded
by |x − y |−2[A] (modulo eventual logarithmic corrections) for
|x − y | small.

We say that an abstract system of pointwise correlations
(eventually, with fields indexed by a set A containing B)
satisfies Wilson’s operator product expansion if there exists
smooth functions CCA,B(x , y) on Conf2 such that one has
“inside correlations” an expansion of the form

OA(x)OB(y) =
∑

[C ]≤∆

CCA,B(x , y)OC (y) + o(|x − y |∆−[A]−[B])

for given cutoff ∆ on scaling dimensions.
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Key hypothesis: ∃η > 0, ∃γ > 0, ∀ε > 0, ∃k ∈ N, ∃K > 0,∣∣∣∣∣
〈

m∏
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OPEi(yi , xi)
m+n∏

i=m+1

CZi(yi , xi)

m+n+p∏
i=m+n+1

OBi
(xi)

〉∣∣∣∣∣×
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Not to worry...the previous monster will be shown again...

It is the Enhanced Nearest Neighbor Factorized Bound
(ENNFB): a quantitative form of Wilson’s OPE.

We used the notation 〈x〉 =
√

1 + |x |2, as well as “OPE” for
objects of the form

OPEi(yi , xi) = OAi
(yi)OBi

(xi)−
∑

[Ci ]≤∆i

CCi
Ai ,Bi

(yi , xi)OCi
(xi) ,

and “CZ” for objects of the form

CZi(yi , xi) = OBi
(yi)−OBi

(xi) .

A special case of the ENNFB is the Basic Nearest Neighbor
Factorized Bound (BNNFB):

∣∣〈OB1(x1) · · · OBp(xp)〉
∣∣ ≤ K

p∏
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〈xi〉k×
p∏
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|xi − xj |
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The third needed hypothesis is a mild condition on the kernels
CCA,B(x , y) which means that the corresponding distribution in

S ′x ,y (R2d) = S ′x(Rd) ⊗̂ S ′y (Rd) in fact belongs to the smaller

space S ′(Rd)x ⊗̂ OM,y (Rd), together with a bound of the
form |x − y |[C ]−[A]−[B]−ε near the diagonal. The ε is for
eventual logarithmic corrections.

Suppose we have a system of abstract pointwise correlations
indexed by A = B ∪ {C∗} satisfying the previous hypotheses
and a pair A,B ∈ B such that CC∗A,B(x , y) is nonzero and obeys

a lower bound of the form |x − y |[C∗]−[A]−[B].

Our main theorem is a construction of the a priori “virtual”
field OC∗ as a Borel measurable functional of the already
existing fields (OC )C∈B on our probability space (Ω,F ,P).
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Essentially, we define it as a renormalized product of the fields
OA and OB , intuitively given by the formula

OC∗(x) = lim
y→x

1

CC∗A,B(y , x)

OA(y)OB(x)−
∑

[C ]≤[C∗],C 6=C∗

CCA,B(y , x)OC (x)

 .

Of course, this is to be understood in the sense of distributions
and needs proper smearing with the rescaled mollifier ρr . We
also require the scaling dimensions of all the fields to belong to
the interval

[
0, d

2

)
.
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1 Introduction

2 Informal presentation of the theorem

3 Examples



Conjectural examples:

Consider a critical ferromagnetic spin field (σx)x∈Zd , of Ising or
φ4 type. The formal Hamiltonian is of the usual form

H(σ) = −1

2

∑
x,y

Jx,yσxσy .

Form the pair of random distributions (φr , φ
2
r ):

φr = Lr(d−[φ])
∑
x∈Zd

σx δLrx ,

φ2
r = Lr(d−[φ2])

∑
x∈Zd

(σ2
x − 〈σ2

x〉) δLrx .

For Ising replace σ2
x by σxσx+e with e canonical basis vector.

In many cases, one expects the pair of random distributions to
converge in joint law when r → −∞ to a pair of continuum
fields (φ, φ2).
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This gives rise to a system of pointwise correlations
corresponding to (OA)A∈A with A = {1l, φ, φ2}.
This system should satisfy the OPE

φ(x1)φ(x2) = C1lφφ(x1, x2)× 1 + Cφ
2

φφ(x1, x2)φ2(x2) + . . .

with OPE coefficients

C1lφφ(x1, x2) =
c1lφφ

|x1 − x2|2[φ]
and Cφ

2

φφ(x1, x2) = cφ
2

φφ|x1−x2|[φ
2]−2[φ]

The scaling dimensions should be given, already at the lattice
level, by the long distance asymptotics

〈σxσy〉 ≈
1

d(x, y)2[φ]
and 〈σ2

x , σ
2
y〉T ≈

1

d(x, y)2[φ2]
.

(again for Ising σ2
x −→ σxσx+e).
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Notable cases:

1) The short-range Euclidean Ising model in dimension d ≥ 2.
d(x, y) = Euclidean distance. Jxy = 1l{d(x, y) = 1}.
2) The short-range Euclidean lattice φ4 model. Same Jxy with
double-well single site measure due to quartic potential.
3) The long-range Euclidean models.

Jxy ≈
1

d(x, y)d+σ

where σ > 0 for well behaved infinite volume limit.
Corresponds to fractional Laplacian (−∆)

σ
2 instead of −∆.

d ≥ 2 or (d = 1 and σ ≤ 1) −→ ∃ phase transition. If σ
large enough, back to short-range case.
4) Hierarchical models. d(x, y) = hierarchical distance on Zd

yet still with

Jxy =
1

d(x, y)d+σ
.
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Euclidean 2D SR Ising: Scaling limit φ with [φ] = 1
8

constructed and shown to be a conformal field theory.
Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM
2015), Camia, Garban and Newman (AP 2015).

Scaling limit for φ2 problematic because [φ2] = 1 = d
2

.
Euclidean 2D SR phi-four: open.
Euclidean 3D SR Ising and phi-four: The conjecture is
that the joint scaling limit (φ, φ2) exists and is a CFT with

[φ] = 0.5181489 . . .

[φ2] = 1.412625 . . .

Best current estimates by Kos, Poland, Simmons-Duffin and
Vichi (JHEP 2016). Note that

[φ2]− 2[φ] = 0.376327 . . .
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Euclidean 3D LR phi-four: d = 3, σ = 3+ε
2

, with
0 < ε� 1, i.e., similar regime to Wilson’s epsilon expansion
(slightly below upper critical dimension).

Lohmann, Slade and Wallace (JSP 2017) proved that

〈σxσy〉 ≈
1

d(x, y)2[φ]

with [φ] = [φ]Gauss = 3−ε
4

.
Hierarchical 3D phi-four: A.A., Chandra and Guadagni
(arXiv 2013) showed that also with d = 3, σ = 3+ε

2

〈σxσy〉 ≈
1

d(x, y)2[φ]
and 〈σ2

x , σ
2
y〉T ≈

1

d(x, y)2[φ2]

where [φ] = [φ]Gauss = 3−ε
4

(this part was known, e.g.,
Gawȩdzki-Kupiainen JSP 1984) and [φ2] > 2[φ] (this is new).
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More precisely, we showed

[φ2]− 2[φ] =
ε

3
+ o(ε)

as predicted by Wilson (PRD 1972).

Bold extrapolation to 3D Ising (ε = 1) gives
[φ2]− 2[φ] ' 0.333 . . .
We also constructed joint scaling limit (φ, φ2) in
S ′(Q3

p)× S ′(Q3
p) and in particular controlled all mixed

moments and not just 2-point function.
A.A. May 2015: proof of BNNFB for the hierarchical scaling
limit, using rigorous space-dependent RG.
A.A. in progress: derivation from first principles of OPE
φ× φ = 1l + φ2 + · · · (fusion rule notation).
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Any (gapped) QFT should satisfy the ENNFB.

“Gapped” refers to the dimension spectrum having the
property that ∀∆, the are finitely many fields with scaling
dimension ≤ ∆. 2d GFF is excluded.
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ENNFB: ∃η > 0, ∃γ > 0, ∀ε > 0, ∃k ∈ N, ∃K > 0, ∀ points,∣∣∣∣∣
〈

m∏
i=1

OPEi(yi , xi)
m+n∏

i=m+1

CZi(yi , xi)

m+n+p∏
i=m+n+1

OBi
(xi)

〉∣∣∣∣∣×
m+n∏
i=1

1l

{
|yi − xi | ≤ ηmin

j 6=i
|xi − xj |

}
≤ K

m+n+p∏
i=1

〈xi〉k ×
m+n∏
i=1

〈yi〉k

×
m∏
i=1

{
|yi − xi |∆i+γ−[Ai ]−[Bi ] ×

(
min
j 6=i
|xi − xj |

)−∆i−γ−ε
}

×
m+n∏

i=m+1

{
|yi − xi |γ ×

(
min
j 6=i
|xi − xj |

)−[Bi ]−γ−ε
}

×
m+n+p∏

i=m+n+1

(
min
j 6=i
|xi − xj |

)−[Bi ]−ε

.



For 2d Ising, the pure φ BNNFB (with ε = 0, k = 0)

∣∣〈OB1(x1) · · · OBp(xp)〉
∣∣ ≤ K

p∏
i=1

(
min
j 6=i
|xi − xj |

)−[Bi ]

means

√∑
ρ

∏
1≤i<j≤p

|xi − xj |
ρiρj

2 ≤ K

p∏
i=1

(
min
j 6=i
|xi − xj |

)− 1
8

with sum over all (ρi)1≤i≤p ∈ {−1, 1}p with
∑p

i=1 ρi = 0.
Relates to electrostatic inequalities (Onsager,Baxter. . . ).
Several (beautiful) proofs: Fröhlich (CMP 1976),
Gunson-Panta (CMP 1977), Lacoin-Rhodes-Vargas (CMP
2015), Hairer-Shen (CMP 2016), Furlan-Mourrat (EJP 2017),
Junnila-Saksman-Webb (arXiv 2018). . . Also, trivial
consequence of Gaussian correlation inequality modulo
Chelkak-Hongler-Izyurov (AM 2015).
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An actual example:

The fractional free field on Rd with [φ] > 0 . Covariance:

〈φ(x)φ(y)〉 =
κ

|x − y |2[φ]

Label set for fields A will be finite subset of A∞ which labels
basis of the plethysm Sym(Sym(Rd)). For example, using
multiindices A∞ =

⋃
r≥0Ar with Ar = (Nd)r/Sr .

Equivalence classes denoted by

A = [ν(1), . . . , ν(r)]←→ OA(x) =: ∂ν(1)φ(x) · · · ∂ν(r)φ(x) :

We let [A] = r [φ] + |ν(1)|+ · · ·+ |ν(r)| and deg(A) = r .
More generally for any finite set F and function ν : F → Nd

we associate a field label A = [ν(a1), . . . , ν(ar )] = {F ; ν}.
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Abstract system of pointwise correlations given by

〈OA1(x1) · · · OAn(xn)〉 =
∑
W

∏
{a,b}∈W

C ν(a),ν(b)(xι(a), xι(b))

with Cα,β(x , y) = ∂αx ∂
β
y 〈φ(x)φ(y)〉.

F is a finite set with a
decomposition F1, . . . ,Fn such that ∀i , |Fi | = deg(Ai) and ν is
a function F → Nd such that ∀i , {Fi ; ν|Fi

} = Ai . For all
a ∈ F , ι(a) denotes the unique i such that a ∈ Fi .

Most importantly, W runs over pair partitions (perfect
matchings) of F with no block-diagonal pair, i.e., no pair
{a, b} ⊂ Fi for some i . Just standard combinatorics of Wick
monomial correlations.
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We checked that this system satisfes OPEs

OA(x)OB(y) =
∑

C , [C ]≤∆

CCAB(x , y)OC (y) + o(|x − y |∆−[A]−[B])

together with the precise estimates embodied in the ENNFB,
as well as the other hypotheses of our theorem on
renormalized products.

The OPE coefficients CCAB(x , y) can be given explicitly, but
with somewhat complicated combinatorial formulas.
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Supplementary technical slides:

CCAB(x1, x2) =
∑
V

∑
(β(a))a∈G1\∪V∈(Nd )G1\∪V

1l{condition}

∏
{a,b}∈V

(a,b)∈G1×G2

C ν(a),ν(b)(x1, x2)×
∏

a∈G1\V

(x1 − x2)β(a)

β(a)!

Condition is:

:
∏

a∈G1\V

∂ν(a)+β(a)φ×
∏

b∈G2\V

∂ν(b)φ := OC

Setting: G is disjoint union of G1, G2. V is a (partial)
matching of G only made of pairs {a, b} with a ∈ G1 and
b ∈ G2. {G1; ν|G1} = A, {G2; ν|G2} = B .



Precise statement of the main theorem:

Zr (x) =

{∫
Conf2

dy dz ρr (x − y)ρr (x − z) CC∗AB(y , z)

}−1

is in OM,x(Rd).
Then let Mr (x) in OM,x(Rd) be given by

Mr (x) = Zr (x)

OA,r (x)OB,r (x)−
∑

[C ]≤[C∗],C 6=C∗

ÕC ,r (x)


where OA,r (x) = (OA ∗ ρr )(x) = 〈OA(y), ρr (x − y)〉y and
similarly OB,r (x) = (OB ∗ ρr )(x) = 〈OB(z), ρr (x − z)〉z while

ÕC ,r (x) = 〈OC (z), gr (x , z)〉z with

gr (x , z) = ρr (x − z)×
∫
Rd\{z}

dy ρr (x − y) CCAB(y , z) .



Note that the dependence on the sample ω ∈ Ω has been
suppressed from the notation and that OA, OB , OC designate
the distribution-valued random variables provided by the
probabilistic incarnation for B. We view Mr (x) as the random
Schwartz distribution whose action on a test function
f ∈ S(Rd) is of course given by

Mr (f ) =

∫
Rd

dx Mr (x)f (x) = 〈Mr (x), f (x)〉x .

One can show that Mr (f ) is indeed well defined,
F -measurable, and in every Lp(Ω,F ,P), p ≥ 1.



Main Theorem:

1 For any test function f , and when taking r → −∞, the
random variable Mr (f ) converges in every Lp(Ω,F ,P),
p ≥ 1, and P-almost surely to a random variable which
we will denote by OC∗(f ).

2 The limit is independent from the choice of mollifier ρ.

3 There exists a Borel-measurable map
P :

∏
C∈B S ′(Rd)→ S ′(Rd) such that for all f ∈ S(Rd),

OC∗(f ) = [P ((OC )C∈B)] (f ), P-almost surely.

4 If one extends the probabilistic incarnation to B ∪ {C∗}
by adding the S ′(Rd)-valued random variable
P ((OC )C∈B), then the result is a probabilistic incarnation
of the system of pointwise correlations corresponding to
the new set of labels B ∪ {C∗}.


