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with a > 0 and b € R.

These are the single-site ¢*-type measures with a quartic
potential.

Let @ denote the closure in the set of Borel probability
measures for the topology of weak convergence. It is obtained
by adding centered Gaussians (a = 0, b > 0), the Dirac mass
at the origin o and the measures of the form (0, + d_,) with
A > 0.

A =1 +— standard Ising spins.

Let Qpy correspond to the double-well measures: Pap With
a>0,b<0or3(0y+0d_,) with A > 0.
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Let L be a countably infinite set (the lattice) and
J = (Jxy)xyer be an infinite matrix with J = 0,
Jyy = Jyx > 0. Also assume

[ l|ooa = sup > Jyy < 00 .
oy

Pick p € Qpw, let 3, h >0, and for A finite subset of L and
op € RN define

H/\(¢/\) - - Z ny¢x¢y - hz¢x .

x,yEA xeA

This gives a Borel probability measure v/ 5, on lattice fields
¢ € R" where dlna = 0 and ¢p = ¢[a is sampled according to
the measure
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For a large class of models one can show existence of infinite
volume limit, i.e., probability measure v, on R" such that for
all sequences A\, L, vp, 5.n — V3,5 weakly and in sense of
moments.

Will use (--- )z for expectations with vg j.

Define

X(8) = [1{6x0y)aollc = 5P D> _{9xy) 50 € 0,09] .
y

3 phase transition iff 351, 5> € (0, 00) such that (/1) < oo
and x(f2) = co. If so, let

fe = sup{f [ x(8) < oo} =inf{f3 | x(B) = oo} .

Then v, = vg_g is the critical theory.
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Examples:
1) The short-range Euclidean Ising model in dimension d > 2.
p=2(01 4 6_1). L = Z9 with d(x,y) = Euclidean distance.
Jy = 1{d(x.y) = 1}.
2) The short-range Euclidean lattice ¢* model. The same with
p:pa,béaow, a>0,b<0.
3) The long-range Euclidean models. p € Qpy, L = Z¢,

1
d(x,y)d
where ¢ > 0 and &~ means the ratio is uniformly bounded
away from 0 and oco. Corresponds to fractional Laplacian
(—A)2 instead of —A. 0 >0 — T infinite volume limit.
d>2or(d=1and 0 <1) — 3 phase transition.
4) Hierarchical models. d(x,y) hierarchical distance on L and
for some constant K > 0,

vy
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The hierarchical continuum:
Let p be an integer > 1 (in fact a prime number).

Let Ly, k € Z, be the set of cubes [, [aip¥, (a; + 1)p¥) with
ai,...,aq € Ng. The cubes of IL, form a partition of the
octant [0, 00)9.

Hence T = UkezILi naturally has the structure of a doubly
infinite tree which is organized into layers or generations Lj:



Picture ford =1, p =2
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Forget [0,00)¢ and R¥ and just keep the tree.
Define the substitute for the continuum Qg = leafs at infinity
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Forget [0,00)¢ and R¥ and just keep the tree.

Define the substitute for the continuum Qg := leafs at infinity
"T_s".

More precisely, these are the infinite bottom-up paths in the
tree.

A path representing an element x € @g
] = =
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Let 0 € Qg be the sequence with all digits equal to zero.

Caution! dangerous notation

a, represents the local coordinates for a cube of IL_,,_; inside
a cube of L_,,.
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If x = (an)nez then px := (a,-1)nez, i-e., upward shift.

0 x

\\/g \}
N\

Likewise p~1x is downward shift, and so on for the definition
of p¥x, k € Z.
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Distance:

If x,y € @g, define their distance as |x — y|, := p* where k is
the depth where the two paths merge.

Also let |x|, := |x — 0|,. Because of the dangerous notation

|PX‘p = Pil‘x|p
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Metric space Qg — Borel o-algebra — Lebesgue measure d9x
which gives a volume p? to closed balls of radius p*.

Construction: take product of uniform probability measures on
({0,1,...,p—1}9)% for B(0,1). Do the same for the other
closed unit balls, and collate.

The hierarchical lattice:

Truncate the tree at level zero and take L := LLy. Using the
identification of nodes with balls, define the hierarchical
distance as

dix,y)=inf{|{x —yl, | x€x, y €y}.
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Scaling limits:

In the Euclidean case, . = Z? and (¢y)xez¢s sampled with v.
Let L > 1 be an integer and [¢] a suitable number (the scaling
dimension). For r € Z define the random Schwartz
distribution ¢, in S’(RY) (or D'(R?)) given by

O, = LD S 6, 6y,

xeZd

Here 5, (y) = 09(y — L") translated Dirac delta on R¢.
The scaling limit is the limit in (probability) distribution of ®,
when r — —oo. It is a Borel probability measure on S'(IRY).
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For another suitable number [¢?] one can also consider the
random distribution

®F = L@ Y7 (6F — (dF)c) durw -

xezd

For Ising replace ¢2 by ¢,y with e canonical basis vector. If
it exists, the limit in joint distribution (®,, ®2) — (®,d?) is a
probability measure on S'(R?) x §'(RY). Is $2 a local
deterministic function of ® 7
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[¢] is the scaling dimension of the spin field. [¢?] is the scaling
dimension of the energy field. Can be read from long distance
asymptotics

- 1 2 T 1
(Pxy)c ~ a0x.y) and (¢, 95)c ~ dlx.y A7

with statistical mechanics notation (--- )7 for joint cumulants.
Let [¢]causs = % .in SR case and [¢]gauss = % in LR case.
Anomalous dimension for ® <= [¢] > [¢]causs-

Anomalous dimension for ®? <= [¢?] > 2[4].
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constructed and shown to be a conformal field theory.
Dubedat (arXiv 2011), Chelkak, Hongler and lzyurov (AM
2015), Camia, Garban and Newman (AP 2015).

Scaling limit for ®2 problematic because [¢?] =1 = 4.
Euclidean 2D SR phi-four: open.

Euclidean 3D SR Ising and phi-four: The conjecture is
that the joint scaling limit (®, ®2) exists and is a CFT with

[¢] = 0.5181489 . ..

[¢%] = 1.412625.. ..

Best current estimates by Kos, Poland, Simmons-Duffin and
Vichi (JHEP 2016). Note that

[¢%] — 2[¢] = 0.376327 ...
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Euclidean 3D LR phi-four: d = 3, o = 3, with

0 < e <1, ie., same regime as in Wilson's epsilon expansion
(slightly below upper critical dimension).

Lohmann, Slade and Wallace (arXiv 2017) proved that

1
<¢x¢y>c ~ W

with [¢] = [¢]Gauss = %
Hierarchical 3D phi-four: A A., Chandra and Guadagni
(arXiv 2013) showed that also with d = 3, 0 = 1<

N 1 2 NT 1
(Oxtv)e ~ gy 2 G dy)e ~ o

where [¢] = [¢]causs = 25 (this part was already done by
Gawedzki and Kupiainen JSP 1984) and [¢?] > 2[¢].
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More precisely, we showed
€
[67] - 216] = § + o(¢)

as predicted by Wilson (PRD 1972).

Bold extrapolation to 3D Ising (e = 1) gives

[¢?] — 2[¢] ~ 0.333...

We also constructed joint scaling limit (¢, ®2) in

S'(Q3%) x S'(Q3}) and in particular controlled all mixed
moments and not just 2-point function.

A.A. (arXiv 2016) showed that Operator Product Expansion
together with condition [¢], [#*] < ¢ implies that ®? is local
deterministic function of ®.

A.A. in progress: derivation of OPE & x & = 14 ¢2 4 ...
(fusion rule notation).
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Switching gears to the QFT point of view:

To every set G of offsprings of a node z € IL,,; associate a
centered Gaussian random vector (()xec with p¢ x p?
covariance matrix made of 1 — p~9's on the diagonal and
—p~9's everywhere else. We impose that Gaussian vectors
corresponding to different layers or different litters are
independent. We have > (=0 a.s.
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The ancestor function: for k < k/, x € Ly, let ancy(x) denote
the ancestor in L.
Ditto for anc, (x) when x € Q.
The massless Gaussian field ¢(x), x € QJ of scaling dimention
[¢] is given by
¢(X) = Z pik[d)]ganck(x)
ke
c

(p(x)o(y)) = m

This is heuristic since ¢ is not well-defined in a pointwise
manner. We need random Schwartz(-Bruhat) distributions.
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Test functions:

f: Qg — R is smooth if it is locally constant.
Define S(Qg) as the space of compactly supported smooth
functions.

We have
S(Qg) - UnGNan,n(Qz)
where for all t_ < t,, S; ., (@g) denotes the space of

functions which are constant in each of the closed balls of
radius p*~ and with support inside B(0, p*).

Topology generated by the set of all possible semi-norms.
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Distributions:

5'(Qg) is the dual space with strong topology (happens to be

same as weak-x).
Thus
S'(QY) ~ R"

p

with product topology — Polish space.

Probability Theory on $'(Q%) is super!
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Recall that d = 3, [¢] = 2. Now let L = p* zooming-out
factor

r € Z UV cut-off, r - —o0
s € Z IR cut-off, s — o0

The regularized Gaussian measure fic, is the law of

gb,(X) = Z p—k[¢]<=aan(X)

k=/Cr

Sample fields are true functions that are locally constant on
scale L". These measures are scaled copies of each other.
If the law of ¢(-) is ¢, then that of L= lp(L ) is uc..
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Fix the parameters g, ;1 and let g, = L~ G~4?Drg and
= L6207,

Let A, = B(0, L) € @3, IR (or volume) cut-off.
Let

Vi s() = A {g:: 0" i, (X) +pr 2 9% 1, (x)}dx
and define the probability measure

1
dv,s(¢) = Z € Vi@ dpuc,(¢)

r,s



Let ¢, s be the random distribution in S'(Q?) sampled
according to v, s and define the squared field N,[¢? ] which is
a deterministic function(al) of ¢, s, with values in 5'(Q3),

given by
N(62.10) = Z / (Vs 620 () — Yol 21} j(x) dx

for suitable parameters 25, Yy, Yo.



Let ¢, s be the random distribution in S'(Q?) sampled
according to v, s and define the squared field N,[¢? ] which is
a deterministic function(al) of ¢, s, with values in 5'(Q3),
given by

NIGIO) = 2 [ (Yer o (= Yol ™11} ) ds

for suitable parameters 25, Yy, Yo.

The main result concerns the limit law of the pair

(¢r.s; Ne[#7]) in S'(Q2) x S'(Q}) when r — —o0, s — oo (in
any order).

For the precise statement we need the approximate fixed point

value
_ pc—1

& 7 36Le(1— p-3)
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Theorem 1: A.A.-Chandra-Guadagni 2013

Jdp > 0, Ly, VL > Lo, Jeo > 0, Ve € (0,¢6], I[d?]>2[9],
3 fonctions u(g), Yo(g), Ya(g) on (8. — pez,g. + pe2) such
that if one lets u = wu(g), Yo = Yo(g), Yo = Ya(g) and
Z, = L~(#"1-29) then the joint law of (¢,.s, N,[¢2,]) converge
weakly and in the sense of moments to that of a pair (¢, N[¢?])
such that:
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Theorem 1: A.A.-Chandra-Guadagni 2013

Jdp > 0, Ly, VL > Lo, Jeo > 0, Ve € (0,¢6], I[d?]>2[9],
3 fonctions u(g), Yo(g), Ya(g) on (8. — pez,g. + pe2) such
that if one lets u = wu(g), Yo = Yo(g), Yo = Ya(g) and
Z, = L~(#"1-29) then the joint law of (¢,.s, N,[¢2,]) converge
weakly and in the sense of moments to that of a pair (¢, N[¢?])
such that:

® vk € Z, (LHg(Lk), LHANY(LR) £ (6, N[o?)).
el <¢(lzg)7¢(lzg)a¢(lzg),¢(lzg)>T <0ie, ¢is

non-Gaussian. Here, lzg denotes the indicator function of

B(0,1).
@ (N[#*](1z3), N[¢*](1z3))" = 1.




The mixed correlation functions satisfy, in the sense of
distributions,

(O(L™x) -+~ (L™ %a) N[$*) (L™ ¥1) - - N[6*J(L™ ym))
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The mixed correlation functions satisfy, in the sense of
distributions,

(O(L™x) -+~ (L™ %a) N[$*) (L™ ¥1) - - N[6*J(L™ ym))

= L BEmEDE (G () - p0m)NE%) (1) - - - N[67](vm))

The law vy, 42 of (¢, N[¢?]) is independent of g: universality.
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Vgxq? is fully scale invariant, i.e., invariant under the action of
the scaling group p” instead of the subgroup L”. Moreover,
1(g) and [¢?] are independent of the arbitrary factor L.
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Theorem 2: A.A.-Chandra-Guadagni 2013

Vgxq? is fully scale invariant, i.e., invariant under the action of
the scaling group p” instead of the subgroup L”. Moreover,
1(g) and [¢?] are independent of the arbitrary factor L.

The two-point correlations are given in the sense of
distributions by

(5]

Ix — y| 3!

&}

(N[¢*](x) N[¢*](y)) = m

(6(x)o(y)) =

Note that 2[¢?] =3 — ¢ + o(e) — still Loc |
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Relation to previous statistical mechanics point of view:
As = B(0, L*) C Q3 can also be seen as subset of L = L.
Unit cutoff covariance (, can also be seen as lattice
covariance Cp = (Coxy)xyeL.- More precisely

1— p (32D 1
Coxy = 77 X 204]
1-p d(x,y)
for x # y and
1—p3
CO,XX — 1_ p_2[¢] .

Define the new matrix A = (Axy)xyer by

Ay = leTO(CO|/\s)x_y1 ~



Then

p-adl —1 1
Ay = — —— X
1— p (6—2[¢]) d(x,y)3+"
for x # y and
p - 1P
X 1-— p—2[¢] '

Here again o = 3 — 2[¢] = 3£,



Then

3-2[¢] _q 1
Ay = — id X
1— p—(6—2[¢]) d(x’ y)3+‘7
for x # y and
1— -3
Aox = [izm '
1-p

Here again o = 3 — 2[¢] = 3£,
We proved that lims_, 1/ s is the same infinite volume lattice
measure as previous v, for suitable a, b, ., K related to

g, 1(g)-
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The renormalization group idea in a nutshell:

Want to study feature Z(V/) of some object V € & but too
hard!

Find “simplifying” transformation RG : &€ — &, such that
Z(RG(V)) = Z(V), and lim,_,oc RG"(V) = V. with Z(V,)
easy.

Example (Landen-Gauss): V = (a, b) € £ = (0, 00)?

do
\/a2 cos? 6 + b2sin? 6

Take RG(a, b) = (a;b, @).
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In usual rigorous RG couplings are constant in space

Jig: 6 00+ n: s ()%

ACG 2013 — inhomogeneous RG for space-dependent
couplings.

18005 6* 5 (0 ) - ()}

e.g., g(x) = g+ dg(x), with dg(x) a local perturbation such
as test function.

Rigorous nonperturbative version of the local RG:
Wilson-Kogut PR 1974, Drummond-Shore PRD 1979,
Jack-Osborn NPB 1990,. ..

used for generalizations of Zamolodchikov's c-"“Theorem",
study of scale versus conformal invariance, AdS/CFT,. ..
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SEs(f) = Iog]E,,,yse"qﬁ(f) = log

meA@@m(—Aj&u¢“r@)+Mn¢2ﬁdx+f¢vﬂvﬁk>

J dic,(8)exp (= [y {8 6* o (x) + e 62 o ho)
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= log
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1st step: switch to unit lattice/cut-off

S,Ts(f) = Iog]E,,,yse"qﬁ(f) = log

f duc, (¢) exp <_ f/\s{gr O (x) + p ¢2 rpdx + fgb(x)

f(x)dx)

[ duc.(¢)exp (— oA 0% () +pr i 92 }dX)

o LG @TIAW) | 2(Vl)
[ duc,(@)ZrN[0)(¢) 7 z(Vn[o))

with

I(r’r)[f](¢) = exp (— {g:0% 0 (x) +p: 6" 0}dx

Ns—r

+ L3 / ¢(x)f(L_’x)d3x)



2nd step: define inhomogeneous RG
Fluctuation covariance I := (y — G.
Associated Gaussian measure is the law of the fluctuation field

C(X) = Z pik[(b]Canck(x)

0<k<t

L-blocks (closed balls of radius L) are independent. Hence



2nd step: define inhomogeneous RG
Fluctuation covariance I := (5 — (.
Associated Gaussian measure is the law of the fluctuation field

C(X) = Z pik[(ﬁ]Canck(x)

0<k<t

L-blocks (closed balls of radius L) are independent. Hence

/ ZUN[F)(6) dpcy() = / / O+ ) dur(C)dpc (¢)

_ / TEHIF() dpe (6)

with new integrand

70 f(0) = [T + L) dur()



Need to extract vacuum renormalization — better definition is
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Need to extract vacuum renormalization — better definition is
T D[A)(0) = e WD [ TN+ L TIo(L)) dr(c)
so that

[ Ze1(0) duc(0) = 2D [ 107 D1£)(6) dcy(0)

Repeat: Z(rn") — T(rr+1) o 7(rnr+2) 50 T(rs)

One must control

S'(f)= lim Y (56" V[f]) - b(Z"[0]))

s—oo r<q<s

limit of logarithms of characteristic functions.
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Use a Brydges-Yau lift

RGinhom
\7(rvq) —_ \7(r,C7+1)

\ \

7(r.a) N 7(ra+1)

I(r,q)(¢): H [efmAX
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ACAs_g4
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Use a Brydges-Yau lift

RGinhom
Vi Ylnat)

\ \

7Z(r.a) —y Z(ratl)

I(r’Q)(gb): H [efA¢>AX

A€Lgy
ACAs_g4

{exp (—Baa : 97 1, —B3.a 1 Bh ico —Boa D4 i, —Pia: dh ic)
X (1+ Wsa : ¢ ico +Wen : 2 i)
+Ra(¢a)}]

Dynamical variable is V= (Va)acr, with

VA - (/84,A7 /63,A7 62,A7 51,A7 W5,A7 W6,A7 fAJ RA)



RGiphom acts on Eipom, essentially,

I {c" x C°(r,C)}

A€y



RGiphom acts on Eipom, essentially,

I {c" x C°(r,C)}

A€y

Stable subspaces

Erom C Einnom: spatially constant data.

E C Enom: even potential, i.e., g, pu's only and R even
function.

Let RG be induced action of RGiyhom ON £.
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3rd step: stabilize bulk (homogeneous) evolution
Show that ¥q € Z, lim,_,_,, V(r9[0]

exists, i.e.,
lim RGq—f<\7W>[0]>
AL
exists.
g = Lg - Ag® +
RGS w = LFp  — Ag® — Agp +

2
Rl = L(E,N)(R) +
Tadpole graph with mass insertion
As = 12372 / (0, x)? d*x
Q3

is main culprit for anomalous scaling dimension

[¢%] - 2[¢] > 0.
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Irwin's proof — stable manifold W*

Restriction to W*® — contraction — IR fixed point v,.
Construct unstable manifold W", intersect with W?,
transverse at v,.

Here, V(»1)[0] is independent of r: strict scaling limit of fixed
model on unit lattice.

Must be chosen in W* — (g) critical mass.

Thus .
Vq € Z, lim V9[0] = v,
r——00

Tangent spaces at fixed point: E® and E".
E" = Ce,, with e, eigenvector of D, RG for eigenvalue
oy = 13729 % 7, = 3%,
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4th step: control inhomogeneous evolution (deviation
from bulk) for all effective (logarithmic) scale g,

Vra[f] — V9[0] uniformly in r.

1) > .cc ¢ = 0as. — deviation is 0 for g <local constancy
scale of test function f.

2) Deviation resides in closed unit ball containing origin for
q >radius of support of f — exponential decay for large q.
For source term with ¢? add

e / 6% 1, (X))

to potential. S (f, /) now involves two test functions. After
rescaling to unit lattice/cut-off

Yza/ ¢2 Co L X)d

to be combined with 1 into (f2,4)acL, Space-dependent mass.
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5th step: partial linearization

In order to replay same sequence of moves with j present,
construct
V(v,w) = lim RG"(v+ a,"w)

n—o0

for v € W* and all direction w (especially [ : ¢?:).

For v fixed, W(v,-) is parametrization of W" satisfying
V(v,a,w) = RG(V(v,w)).

If there were no W* directions (1D dynamics) then W would

be conjugation — Poincaré-Kcenigs Theorem.

V(v, w) is holomorphic in v and w.
Essential for probabilistic interpretation of (¢, N[$?]) as pair of
random variables in §'(Q3).
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