A proof of Wilson's epsilon expansion for a toy model of three-dimensional conformal field theory

Abdelmalek Abdesselam Mathematics Department, University of Virginia

Joint with A. Chandra (Imperial) and G. Guadagni (UVa)

Probability Seminar at Columbia University September 8, 2017

- Generalities about Ising and phi-four ferromagnets
- Results and conjectures
- A new method: space-dependent renormalization group

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let Q be the set of probability measures $\rho_{a,b}$ on \mathbb{R} given by

$$d\rho_{a,b}(x) = \frac{1}{Z_{a,b}} \exp(-ax^4 - bx^2) dx$$

with a > 0 and $b \in \mathbb{R}$.

Let Q be the set of probability measures $\rho_{a,b}$ on \mathbb{R} given by

$$d\rho_{a,b}(x) = \frac{1}{Z_{a,b}} \exp(-ax^4 - bx^2) dx$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

with a > 0 and $b \in \mathbb{R}$.

These are the single-site ϕ^4 -type measures with a quartic potential.

Let Q be the set of probability measures $\rho_{a,b}$ on \mathbb{R} given by

$$d\rho_{a,b}(x) = \frac{1}{Z_{a,b}} \exp(-ax^4 - bx^2) dx$$

with a > 0 and $b \in \mathbb{R}$.

These are the single-site ϕ^4 -type measures with a quartic potential.

Let \overline{Q} denote the closure in the set of Borel probability measures for the topology of weak convergence. It is obtained by adding centered Gaussians (a = 0, b > 0), the Dirac mass at the origin δ_0 and the measures of the form $\frac{1}{2}(\delta_{\lambda} + \delta_{-\lambda})$ with $\lambda > 0$.

Let Q be the set of probability measures $\rho_{a,b}$ on \mathbb{R} given by

$$d\rho_{a,b}(x) = \frac{1}{Z_{a,b}} \exp(-ax^4 - bx^2) dx$$

with a > 0 and $b \in \mathbb{R}$.

These are the single-site ϕ^4 -type measures with a quartic potential.

Let \overline{Q} denote the closure in the set of Borel probability measures for the topology of weak convergence. It is obtained by adding centered Gaussians (a = 0, b > 0), the Dirac mass at the origin δ_0 and the measures of the form $\frac{1}{2}(\delta_{\lambda} + \delta_{-\lambda})$ with $\lambda > 0$.

 $\lambda = 1 \iff$ standard Ising spins.

Let Q be the set of probability measures $\rho_{a,b}$ on \mathbb{R} given by

$$d\rho_{a,b}(x) = \frac{1}{Z_{a,b}} \exp(-ax^4 - bx^2) dx$$

with a > 0 and $b \in \mathbb{R}$.

These are the single-site ϕ^4 -type measures with a quartic potential.

Let \overline{Q} denote the closure in the set of Borel probability measures for the topology of weak convergence. It is obtained by adding centered Gaussians (a = 0, b > 0), the Dirac mass at the origin δ_0 and the measures of the form $\frac{1}{2}(\delta_{\lambda} + \delta_{-\lambda})$ with $\lambda > 0$.

 $\lambda = 1 \iff$ standard Ising spins.

Let \overline{Q}_{DW} correspond to the double-well measures: $\rho_{a,b}$ with a > 0, b < 0 or $\frac{1}{2}(\delta_{\lambda} + \delta_{-\lambda})$ with $\lambda > 0$.

Let \mathbb{L} be a countably infinite set (the lattice) and $J = (J_{xy})_{x,y \in \mathbb{L}}$ be an infinite matrix with $J_{xx} = 0$, $J_{xy} = J_{yx} \ge 0$. Also assume

$$||J||_{\infty,1} := \sup_{\mathbf{x}} \sum_{\mathbf{y}} J_{\mathbf{x}\mathbf{y}} < \infty$$
 .

Let \mathbb{L} be a countably infinite set (the lattice) and $J = (J_{xy})_{x,y \in \mathbb{L}}$ be an infinite matrix with $J_{xx} = 0$, $J_{xy} = J_{yx} \ge 0$. Also assume

$$||J||_{\infty,1}:=\sup_{\mathbf{x}}\sum_{\mathbf{y}}J_{\mathbf{x}\mathbf{y}}<\infty$$
 .

Pick $\rho \in \overline{Q}_{DW}$, let $\beta, h \ge 0$, and for Λ finite subset of \mathbb{L} and $\phi_{\Lambda} \in \mathbb{R}^{\Lambda}$ define

$$\mathcal{H}_{\Lambda}(\phi_{\Lambda}) = -\sum_{\mathbf{x},\mathbf{y}\in\Lambda} J_{\mathbf{x}\mathbf{y}}\phi_{\mathbf{x}}\phi_{\mathbf{y}} \ -h\sum_{\mathbf{x}\in\Lambda}\phi_{\mathbf{x}} \ .$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let \mathbb{L} be a countably infinite set (the lattice) and $J = (J_{xy})_{x,y \in \mathbb{L}}$ be an infinite matrix with $J_{xx} = 0$, $J_{xy} = J_{yx} \ge 0$. Also assume

$$||J||_{\infty,1}:=\sup_{\mathbf{x}}\sum_{\mathbf{y}}J_{\mathbf{x}\mathbf{y}}<\infty$$
 .

Pick $\rho \in Q_{DW}$, let $\beta, h \ge 0$, and for Λ finite subset of \mathbb{L} and $\phi_{\Lambda} \in \mathbb{R}^{\Lambda}$ define

$$\mathcal{H}_{\Lambda}(\phi_{\Lambda}) = -\sum_{\mathbf{x},\mathbf{y}\in\Lambda} J_{\mathbf{x}\mathbf{y}}\phi_{\mathbf{x}}\phi_{\mathbf{y}} \ -h\sum_{\mathbf{x}\in\Lambda}\phi_{\mathbf{x}} \ .$$

This gives a Borel probability measure $\nu_{\Lambda,\beta,h}$ on lattice fields $\phi \in \mathbb{R}^{\mathbb{L}}$ where $\phi|_{\mathbb{L}\setminus\Lambda} = 0$ and $\phi_{\Lambda} = \phi|_{\Lambda}$ is sampled according to the measure

$$\frac{1}{Z_{\Lambda,\beta,h}} e^{-\beta H_{\Lambda}(\phi_{\Lambda})} \prod_{\mathbf{x}\in\Lambda} d\rho(\phi_{\mathbf{x}}) .$$

Will use $\langle \cdots \rangle_{\beta,h}$ for expectations with $\nu_{\beta,h}$.

Will use $\langle \cdots \rangle_{\beta,h}$ for expectations with $\nu_{\beta,h}$. Define

$$\chi(eta) = ||\langle \phi_{\mathbf{x}}\phi_{\mathbf{y}}
angle_{eta,\mathbf{0}}||_{\infty,\mathbf{1}} = \sup_{\mathbf{x}} \sum_{\mathbf{y}} \langle \phi_{\mathbf{x}}\phi_{\mathbf{y}}
angle_{eta,\mathbf{0}} \in [\mathbf{0},\infty] \;.$$

Will use $\langle \cdots \rangle_{\beta,h}$ for expectations with $\nu_{\beta,h}$. Define

$$\chi(\beta) = ||\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{\beta, \mathbf{0}}||_{\infty, \mathbf{1}} = \sup_{\mathbf{x}} \sum_{\mathbf{y}} \langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{\beta, \mathbf{0}} \in [0, \infty] \ .$$

 \exists phase transition iff $\exists \beta_1, \beta_2 \in (0, \infty)$ such that $\chi(\beta_1) < \infty$ and $\chi(\beta_2) = \infty$.

Will use $\langle \cdots \rangle_{\beta,h}$ for expectations with $\nu_{\beta,h}$. Define

$$\chi(\beta) = ||\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{\beta, \mathbf{0}}||_{\infty, \mathbf{1}} = \sup_{\mathbf{x}} \sum_{\mathbf{y}} \langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{\beta, \mathbf{0}} \in [0, \infty] \ .$$

 \exists phase transition iff $\exists \beta_1, \beta_2 \in (0, \infty)$ such that $\chi(\beta_1) < \infty$ and $\chi(\beta_2) = \infty$. If so, let

$$\beta_c = \sup\{\beta \mid \chi(\beta) < \infty\} = \inf\{\beta \mid \chi(\beta) = \infty\}$$
.

Then $\nu_c := \nu_{\beta_c,0}$ is the critical theory.

1) The short-range Euclidean Ising model in dimension $d \ge 2$. $\rho = \frac{1}{2}(\delta_1 + \delta_{-1})$. $\mathbb{L} = \mathbb{Z}^d$ with $d(\mathbf{x}, \mathbf{y}) =$ Euclidean distance. $J_{\mathbf{xy}} = \mathbb{1}\{d(\mathbf{x}, \mathbf{y}) = 1\}.$

The short-range Euclidean Ising model in dimension d ≥ 2.
 ρ = ½(δ₁ + δ₋₁). L = Z^d with d(x, y) = Euclidean distance.
 J_{xy} = 1{d(x, y) = 1}.
 The short-range Euclidean lattice φ⁴ model. The same with ρ = ρ_{a,b} ∈ Q_{DW}, a > 0, b < 0.

The short-range Euclidean Ising model in dimension d ≥ 2.
 ρ = ½(δ₁ + δ₋₁). L = Z^d with d(x, y) = Euclidean distance.
 J_{xy} = 1{d(x, y) = 1}.
 The short-range Euclidean lattice φ⁴ model. The same with ρ = ρ_{a,b} ∈ Q_{DW}, a > 0, b < 0.
 The long-range Euclidean models. ρ ∈ Q_{DW}, L = Z^d,
 J_{xy} ≈ 1/d(x, y)^{d+σ}

where $\sigma > 0$ and \approx means the ratio is uniformly bounded away from 0 and ∞ . Corresponds to fractional Laplacian $(-\Delta)^{\frac{\sigma}{2}}$ instead of $-\Delta$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

The short-range Euclidean Ising model in dimension d ≥ 2.
 ρ = ½(δ₁ + δ₋₁). L = Z^d with d(x, y) = Euclidean distance.
 J_{xy} = 1{d(x, y) = 1}.
 The short-range Euclidean lattice φ⁴ model. The same with ρ = ρ_{a,b} ∈ Q_{DW}, a > 0, b < 0.
 The long-range Euclidean models. ρ ∈ Q_{DW}, L = Z^d,
 J_{xy} ≈ 1/d(x, y)^{d+σ}

where $\sigma > 0$ and \approx means the ratio is uniformly bounded away from 0 and ∞ . Corresponds to fractional Laplacian $(-\Delta)^{\frac{\sigma}{2}}$ instead of $-\Delta$. $\sigma > 0 \longrightarrow \exists$ infinite volume limit.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The short-range Euclidean Ising model in dimension d ≥ 2.
 ρ = ½(δ₁ + δ₋₁). L = Z^d with d(x, y) = Euclidean distance.
 J_{xy} = 1{d(x, y) = 1}.
 The short-range Euclidean lattice φ⁴ model. The same with ρ = ρ_{a,b} ∈ Q_{DW}, a > 0, b < 0.
 The long-range Euclidean models. ρ ∈ Q_{DW}, L = Z^d,
 J_{xy} ≈ 1/d(x, y)^{d+σ}

where $\sigma > 0$ and \approx means the ratio is uniformly bounded away from 0 and ∞ . Corresponds to fractional Laplacian $(-\Delta)^{\frac{\sigma}{2}}$ instead of $-\Delta$. $\sigma > 0 \longrightarrow \exists$ infinite volume limit. $d \ge 2$ or $(d = 1 \text{ and } \sigma \le 1) \longrightarrow \exists$ phase transition.

The short-range Euclidean Ising model in dimension d ≥ 2.
 ρ = ½(δ₁ + δ₋₁). L = Z^d with d(x, y) = Euclidean distance.
 J_{xy} = 1{d(x, y) = 1}.
 The short-range Euclidean lattice φ⁴ model. The same with ρ = ρ_{a,b} ∈ Q_{DW}, a > 0, b < 0.
 The long-range Euclidean models. ρ ∈ Q_{DW}, L = Z^d,
 J_{xy} ≈ 1/d(x, y)^{d+σ}

where $\sigma > 0$ and \approx means the ratio is uniformly bounded away from 0 and ∞ . Corresponds to fractional Laplacian $(-\Delta)^{\frac{\sigma}{2}}$ instead of $-\Delta$. $\sigma > 0 \longrightarrow \exists$ infinite volume limit. $d \ge 2$ or $(d = 1 \text{ and } \sigma \le 1) \longrightarrow \exists$ phase transition. 4) Hierarchical models. $d(\mathbf{x}, \mathbf{y})$ hierarchical distance on \mathbb{L} and for some constant K > 0,

$$J_{\mathbf{x}\mathbf{y}} = \mathcal{K} rac{1}{d(\mathbf{x},\mathbf{y})^{d+\sigma}} \; .$$

Let p be an integer > 1 (in fact a prime number).

Let p be an integer > 1 (in fact a prime number).

Let \mathbb{L}_k , $k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^d [a_i p^k, (a_i + 1)p^k]$ with $a_1, \ldots, a_d \in \mathbb{N}_0$. The cubes of \mathbb{L}_k form a partition of the octant $[0, \infty)^d$.

Let p be an integer > 1 (in fact a prime number).

Let \mathbb{L}_k , $k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^d [a_i p^k, (a_i + 1)p^k]$ with $a_1, \ldots, a_d \in \mathbb{N}_0$. The cubes of \mathbb{L}_k form a partition of the octant $[0, \infty)^d$.

Hence $\mathbb{T} = \bigcup_{k \in \mathbb{Z}} \mathbb{L}_k$ naturally has the structure of a doubly infinite tree which is organized into layers or generations \mathbb{L}_k :

Picture for d = 1, p = 2

Forget $[0,\infty)^d$ and \mathbb{R}^d and just keep the tree. Define the substitute for the continuum $\mathbb{Q}_p^d :=$ leafs at infinity " $\mathbb{L}_{-\infty}$ ".

Forget $[0, \infty)^d$ and \mathbb{R}^d and just keep the tree. Define the substitute for the continuum $\mathbb{Q}_p^d :=$ leafs at infinity " $\mathbb{L}_{-\infty}$ ".

More precisely, these are the infinite bottom-up paths in the tree.

A path representing an element $x \in \mathbb{Q}_p^d$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A point $x \in \mathbb{Q}_p^d$ is encoded by a sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Let $0 \in \mathbb{Q}_p^d$ be the sequence with all digits equal to zero. A point $x \in \mathbb{Q}_p^d$ is encoded by a sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Let $0 \in \mathbb{Q}_p^d$ be the sequence with all digits equal to zero.

Caution! dangerous notation

 a_n represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n} .

A point $x \in \mathbb{Q}_p^d$ is encoded by a sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \dots, p-1\}^d$. Let $0 \in \mathbb{Q}_p^d$ be the sequence with all digits equal to zero.

Caution! dangerous notation

 a_n represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n} .

nac

Moreover, rescaling is defined as follows.

If $x = (a_n)_{n \in \mathbb{Z}}$ then $px := (a_{n-1})_{n \in \mathbb{Z}}$, i.e., upward shift.

Moreover, rescaling is defined as follows.

If $x = (a_n)_{n \in \mathbb{Z}}$ then $px := (a_{n-1})_{n \in \mathbb{Z}}$, i.e., upward shift.

Likewise $p^{-1}x$ is downward shift, and so on for the definition of $p^k x$, $k \in \mathbb{Z}$.

Distance:

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ
If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y|_p := p^k$ where k is the depth where the two paths merge.

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y|_p := p^k$ where k is the depth where the two paths merge.

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y|_p := p^k$ where k is the depth where the two paths merge.

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

500

Also let $|x|_p := |x - 0|_p$.

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y|_p := p^k$ where k is the depth where the two paths merge.

Also let $|x|_p := |x - 0|_p$. Because of the dangerous notation $|px|_p = p^{-1}|x|_p$

Closed balls Δ of radius p^k correspond to the nodes $\mathbf{x} \in \mathbb{L}_k$

Closed balls Δ of radius p^k correspond to the nodes $\mathbf{x} \in \mathbb{L}_k$

Metric space $\mathbb{Q}_p^d \to \text{Borel } \sigma\text{-algebra} \to \text{Lebesgue measure } d^d x$ which gives a volume p^{dk} to closed balls of radius p^k .

Metric space $\mathbb{Q}_p^d \to \text{Borel } \sigma\text{-algebra} \to \text{Lebesgue measure } d^d x$ which gives a volume p^{dk} to closed balls of radius p^k .

Construction: take product of uniform probability measures on $(\{0, 1, \ldots, p-1\}^d)^{\mathbb{N}_0}$ for $\overline{B}(0, 1)$. Do the same for the other closed unit balls, and collate.

Metric space $\mathbb{Q}_p^d \to \text{Borel } \sigma\text{-algebra} \to \text{Lebesgue measure } d^d x$ which gives a volume p^{dk} to closed balls of radius p^k .

Construction: take product of uniform probability measures on $(\{0, 1, \ldots, p-1\}^d)^{\mathbb{N}_0}$ for $\overline{B}(0, 1)$. Do the same for the other closed unit balls, and collate.

The hierarchical lattice:

Truncate the tree at level zero and take $\mathbb{L}:=\mathbb{L}_0.$ Using the identification of nodes with balls, define the hierarchical distance as

$$d(\mathbf{x}, \mathbf{y}) = \inf\{|x - y|_p \mid x \in \mathbf{x}, y \in \mathbf{y}\}.$$

Scaling limits:

Scaling limits:

In the Euclidean case, $\mathbb{L} = \mathbb{Z}^d$ and $(\phi_x)_{x \in \mathbb{Z}^d}$ sampled with ν_c . Let L > 1 be an integer and $[\phi]$ a suitable number (the scaling dimension). For $r \in \mathbb{Z}$ define the random Schwartz distribution Φ_r in $\mathcal{S}'(\mathbb{R}^d)$ (or $\mathcal{D}'(\mathbb{R}^d)$) given by

$$\Phi_r = L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^d} \phi_{\mathbf{x}} \,\, \delta_{L^r \mathbf{x}} \,\,.$$

・ロト ・ 戸 ・ ・ 三 ・ ・ 三 ・ うへつ

Here $\delta_{L'\mathbf{x}}(y) = \delta^d(y - L'\mathbf{x})$ translated Dirac delta on \mathbb{R}^d .

Scaling limits:

In the Euclidean case, $\mathbb{L} = \mathbb{Z}^d$ and $(\phi_x)_{x \in \mathbb{Z}^d}$ sampled with ν_c . Let L > 1 be an integer and $[\phi]$ a suitable number (the scaling dimension). For $r \in \mathbb{Z}$ define the random Schwartz distribution Φ_r in $\mathcal{S}'(\mathbb{R}^d)$ (or $\mathcal{D}'(\mathbb{R}^d)$) given by

$$\Phi_r = L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^d} \phi_{\mathbf{x}} \,\, \delta_{L^r \mathbf{x}} \,\,.$$

Here $\delta_{L^r \mathbf{x}}(\mathbf{y}) = \delta^d(\mathbf{y} - L^r \mathbf{x})$ translated Dirac delta on \mathbb{R}^d . The scaling limit is the limit in (probability) distribution of Φ_r when $r \to -\infty$. It is a Borel probability measure on $\mathcal{S}'(\mathbb{R}^d)$. For another suitable number $[\phi^2]$ one can also consider the random distribution

$$\Phi_r^2 = L^{r(d-[\phi^2])} \sum_{\mathbf{x} \in \mathbb{Z}^d} (\phi_{\mathbf{x}}^2 - \langle \phi_{\mathbf{x}}^2 \rangle_c) \, \delta_{L^r \mathbf{x}} \; .$$

For Ising replace ϕ_x^2 by $\phi_x \phi_{x+e}$ with **e** canonical basis vector.

For another suitable number $[\phi^2]$ one can also consider the random distribution

$$\Phi_r^2 = L^{r(d-[\phi^2])} \sum_{\mathbf{x} \in \mathbb{Z}^d} (\phi_{\mathbf{x}}^2 - \langle \phi_{\mathbf{x}}^2 \rangle_c) \, \delta_{L^r \mathbf{x}} \, .$$

For Ising replace $\phi_{\mathbf{x}}^2$ by $\phi_{\mathbf{x}}\phi_{\mathbf{x}+\mathbf{e}}$ with **e** canonical basis vector. If it exists, the limit in joint distribution $(\Phi_r, \Phi_r^2) \rightarrow (\Phi, \Phi^2)$ is a probability measure on $\mathcal{S}'(\mathbb{R}^d) \times \mathcal{S}'(\mathbb{R}^d)$.

For another suitable number $[\phi^2]$ one can also consider the random distribution

$$\Phi_r^2 = L^{r(d-[\phi^2])} \sum_{\mathbf{x} \in \mathbb{Z}^d} (\phi_{\mathbf{x}}^2 - \langle \phi_{\mathbf{x}}^2 \rangle_c) \, \delta_{L^r \mathbf{x}} \, .$$

For Ising replace $\phi_{\mathbf{x}}^2$ by $\phi_{\mathbf{x}}\phi_{\mathbf{x}+\mathbf{e}}$ with **e** canonical basis vector. If it exists, the limit in joint distribution $(\Phi_r, \Phi_r^2) \rightarrow (\Phi, \Phi^2)$ is a probability measure on $\mathcal{S}'(\mathbb{R}^d) \times \mathcal{S}'(\mathbb{R}^d)$. Is Φ^2 a local deterministic function of Φ ?

$$\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text{ and } \langle \phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2} \rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi^{2}]}}$$

with statistical mechanics notation $\langle \cdots \rangle^T$ for joint cumulants.

$$\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text{ and } \langle \phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2} \rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi^{2}]}}$$

with statistical mechanics notation $\langle \cdots \rangle^T$ for joint cumulants. Let $[\phi]_{Gauss} = \frac{d-2}{2}$ in SR case and $[\phi]_{Gauss} = \frac{d-\sigma}{2}$ in LR case.

$$\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text{ and } \langle \phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2} \rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi^{2}]}}$$

with statistical mechanics notation $\langle \cdots \rangle^T$ for joint cumulants. Let $[\phi]_{Gauss} = \frac{d-2}{2}$ in SR case and $[\phi]_{Gauss} = \frac{d-\sigma}{2}$ in LR case. Anomalous dimension for $\Phi \iff [\phi] > [\phi]_{Gauss}$.

$$\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text{ and } \langle \phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2} \rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi^{2}]}}$$

with statistical mechanics notation $\langle \cdots \rangle^T$ for joint cumulants. Let $[\phi]_{Gauss} = \frac{d-2}{2}$ in SR case and $[\phi]_{Gauss} = \frac{d-\sigma}{2}$ in LR case. Anomalous dimension for $\Phi \iff [\phi] > [\phi]_{Gauss}$. Anomalous dimension for $\Phi^2 \iff [\phi^2] > 2[\phi]$.

- Generalities about Ising and phi-four ferromagnets
- Results and conjectures
- A new method: space-dependent renormalization group

Euclidean 2D SR Ising: Scaling limit Φ with $[\phi] = \frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). **Euclidean 2D SR Ising:** Scaling limit Φ with $[\phi] = \frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). Scaling limit for Φ^2 problematic because $[\phi^2] = 1 = \frac{d}{2}$. **Euclidean 2D SR Ising:** Scaling limit Φ with $[\phi] = \frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). Scaling limit for Φ^2 problematic because $[\phi^2] = 1 = \frac{d}{2}$. **Euclidean 2D SR phi-four:** open.

Euclidean 2D SR Ising: Scaling limit Φ with $[\phi] = \frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). Scaling limit for Φ^2 problematic because $[\phi^2] = 1 = \frac{d}{2}$. **Euclidean 2D SR phi-four:** open. **Euclidean 3D SR Ising and phi-four:** The conjecture is that the joint scaling limit (Φ, Φ^2) exists and is a CFT with

 $[\phi] = 0.5181489\ldots$

 $[\phi^2] = 1.412625\ldots$

Best current estimates by Kos, Poland, Simmons-Duffin and Vichi (JHEP 2016).

Euclidean 2D SR Ising: Scaling limit Φ with $[\phi] = \frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). Scaling limit for Φ^2 problematic because $[\phi^2] = 1 = \frac{d}{2}$. **Euclidean 2D SR phi-four:** open. **Euclidean 3D SR Ising and phi-four:** The conjecture is that the joint scaling limit (Φ, Φ^2) exists and is a CFT with

 $[\phi] = 0.5181489 \dots$

 $[\phi^2] = 1.412625\ldots$

Best current estimates by Kos, Poland, Simmons-Duffin and Vichi (JHEP 2016). Note that

$$[\phi^2] - 2[\phi] = 0.376327\dots$$

Euclidean 3D LR phi-four: d = 3, $\sigma = \frac{3+\epsilon}{2}$, with

 $0 < \epsilon \ll 1$, i.e., same regime as in Wilson's epsilon expansion (slightly below upper critical dimension).

Euclidean 3D LR phi-four: d = 3, $\sigma = \frac{3+\epsilon}{2}$, with $0 < \epsilon \ll 1$, i.e., same regime as in Wilson's epsilon expansion (slightly below upper critical dimension).

Lohmann, Slade and Wallace (arXiv 2017) proved that

$$\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}}
angle_c pprox rac{1}{d(\mathbf{x},\mathbf{y})^{2[\phi]}}$$

with $[\phi] = [\phi]_{Gauss} = \frac{3-\epsilon}{4}$.

Euclidean 3D LR phi-four: d = 3, $\sigma = \frac{3+\epsilon}{2}$, with

 $0 < \epsilon \ll 1$, i.e., same regime as in Wilson's epsilon expansion (slightly below upper critical dimension).

Lohmann, Slade and Wallace (arXiv 2017) proved that

$$\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}}
angle_{c} pprox rac{1}{d(\mathbf{x},\mathbf{y})^{2[\phi]}}$$

with $[\phi] = [\phi]_{Gauss} = \frac{3-\epsilon}{4}$. **Hierarchical 3D phi-four:** A.A., Chandra and Guadagni (arXiv 2013) showed that also with d = 3, $\sigma = \frac{3+\epsilon}{2}$

$$\langle \phi_{\mathbf{x}} \phi_{\mathbf{y}} \rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text{ and } \langle \phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2} \rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi^{2}]}}$$

where $[\phi] = [\phi]_{Gauss} = \frac{3-\epsilon}{4}$ (this part was already done by Gawędzki and Kupiainen JSP 1984) and $[\phi^2] > 2[\phi]$.

$$[\phi^2] - 2[\phi] = \frac{\epsilon}{3} + o(\epsilon)$$

as predicted by Wilson (PRD 1972).

$$[\phi^2] - 2[\phi] = \frac{\epsilon}{3} + o(\epsilon)$$

as predicted by Wilson (PRD 1972). Bold extrapolation to 3D Ising ($\epsilon = 1$) gives $[\phi^2] - 2[\phi] \simeq 0.333...$

$$[\phi^2] - 2[\phi] = \frac{\epsilon}{3} + o(\epsilon)$$

・ロト ・ 戸 ・ ・ 三 ・ ・ 三 ・ うへつ

as predicted by Wilson (PRD 1972). Bold extrapolation to 3D Ising ($\epsilon = 1$) gives $[\phi^2] - 2[\phi] \simeq 0.333...$ We also constructed joint scaling limit (Φ, Φ^2) in $\mathcal{S}'(\mathbb{Q}^3_p) \times \mathcal{S}'(\mathbb{Q}^3_p)$ and in particular controlled all mixed moments and not just 2-point function.

$$[\phi^2] - 2[\phi] = \frac{\epsilon}{3} + o(\epsilon)$$

as predicted by Wilson (PRD 1972). Bold extrapolation to 3D Ising ($\epsilon = 1$) gives $[\phi^2] - 2[\phi] \simeq 0.333...$ We also constructed joint scaling limit (Φ, Φ^2) in $\mathcal{S}'(\mathbb{Q}_p^3) \times \mathcal{S}'(\mathbb{Q}_p^3)$ and in particular controlled all mixed moments and not just 2-point function. A.A. (arXiv 2016) showed that Operator Product Expansion together with condition $[\phi], [\phi^2] < \frac{d}{2}$ implies that Φ^2 is local deterministic function of Φ .

$$[\phi^2] - 2[\phi] = \frac{\epsilon}{3} + o(\epsilon)$$

as predicted by Wilson (PRD 1972). Bold extrapolation to 3D Ising ($\epsilon = 1$) gives $[\phi^2] - 2[\phi] \simeq 0.333...$ We also constructed joint scaling limit (Φ, Φ^2) in $S'(\mathbb{Q}_p^3) \times S'(\mathbb{Q}_p^3)$ and in particular controlled all mixed moments and not just 2-point function. A.A. (arXiv 2016) showed that Operator Product Expansion together with condition $[\phi], [\phi^2] < \frac{d}{2}$ implies that Φ^2 is local deterministic function of Φ .

A.A. in progress: derivation of OPE $\Phi \times \Phi = 1 + \Phi^2 + \cdots$ (fusion rule notation).

- Generalities about Ising and phi-four ferromagnets
- Results and conjectures
- A new method: space-dependent renormalization group

Switching gears to the QFT point of view:
Switching gears to the QFT point of view:

To every set G of offsprings of a node $z \in L_{k+1}$ associate a centered Gaussian random vector $(\zeta_x)_{x\in G}$ with $p^d \times p^d$ covariance matrix made of $1 - p^{-d'}$'s on the diagonal and $-p^{-d'}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different litters are independent.

Switching gears to the QFT point of view:

To every set *G* of offsprings of a node $z \in L_{k+1}$ associate a centered Gaussian random vector $(\zeta_x)_{x\in G}$ with $p^d \times p^d$ covariance matrix made of $1 - p^{-d'}$ s on the diagonal and $-p^{-d'}$ s everywhere else. We impose that Gaussian vectors corresponding to different layers or different litters are independent. We have $\sum_{x\in G} \zeta_x = 0$ a.s.

Ditto for $\operatorname{anc}_{k'}(x)$ when $x \in \mathbb{Q}_p^d$.

Ditto for $\operatorname{anc}_{k'}(x)$ when $x \in \mathbb{Q}_p^d$. The massless Gaussian field $\phi(x)$, $x \in \mathbb{Q}_p^d$ of scaling dimention $[\phi]$ is given by

$$egin{aligned} \phi(x) &= \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)} \ \langle \phi(x) \phi(y)
angle &= rac{c}{|x-y|_p^{2[\phi]}} \end{aligned}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ditto for $\operatorname{anc}_{k'}(x)$ when $x \in \mathbb{Q}_p^d$. The massless Gaussian field $\phi(x)$, $x \in \mathbb{Q}_p^d$ of scaling dimension $[\phi]$ is given by

$$egin{aligned} \phi(x) &= \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)} \ \langle \phi(x) \phi(y)
angle &= rac{c}{|x-y|_p^{2[\phi]}} \end{aligned}$$

This is heuristic since ϕ is not well-defined in a pointwise manner. We need random Schwartz(-Bruhat) distributions.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 $f: \mathbb{Q}_p^d \to \mathbb{R}$ is smooth if it is locally constant.

 $f : \mathbb{Q}_p^d \to \mathbb{R}$ is smooth if it is locally constant. Define $S(\mathbb{Q}_p^d)$ as the space of compactly supported smooth functions.

 $f : \mathbb{Q}_p^d \to \mathbb{R}$ is smooth if it is locally constant. Define $S(\mathbb{Q}_p^d)$ as the space of compactly supported smooth functions.

We have

$$S(\mathbb{Q}_p^d) = \cup_{n \in \mathbb{N}} S_{-n,n}(\mathbb{Q}_p^d)$$

where for all $t_{-} \leq t_{+}$, $S_{t_{-},t_{+}}(\mathbb{Q}_{p}^{d})$ denotes the space of functions which are constant in each of the closed balls of radius $p^{t_{-}}$ and with support inside $\overline{B}(0, p^{t_{+}})$.

 $f : \mathbb{Q}_p^d \to \mathbb{R}$ is smooth if it is locally constant. Define $S(\mathbb{Q}_p^d)$ as the space of compactly supported smooth functions.

We have

$$S(\mathbb{Q}_p^d) = \cup_{n \in \mathbb{N}} S_{-n,n}(\mathbb{Q}_p^d)$$

where for all $t_{-} \leq t_{+}$, $S_{t_{-},t_{+}}(\mathbb{Q}_{p}^{d})$ denotes the space of functions which are constant in each of the closed balls of radius $p^{t_{-}}$ and with support inside $\overline{B}(0, p^{t_{+}})$.

Topology generated by the set of all possible semi-norms.

 $S'(\mathbb{Q}_p^d)$ is the dual space with strong topology (happens to be same as weak-*).

 $S'(\mathbb{Q}_p^d)$ is the dual space with strong topology (happens to be same as weak-*).

 $S(\mathbb{Q}_p^d)\simeq\oplus_{\mathbb{N}}\mathbb{R}$

 $S'(\mathbb{Q}_p^d)$ is the dual space with strong topology (happens to be same as weak-*).

$$S(\mathbb{Q}^d_
ho)\simeq\oplus_{\mathbb{N}}\mathbb{R}$$

Thus

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

with product topology

 $S'(\mathbb{Q}_p^d)$ is the dual space with strong topology (happens to be same as weak-*).

$$S(\mathbb{Q}^d_
ho)\simeq\oplus_{\mathbb{N}}\mathbb{R}$$

Thus

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

with product topology \rightarrow Polish space.

 $S'(\mathbb{Q}_p^d)$ is the dual space with strong topology (happens to be same as weak-*).

$$S(\mathbb{Q}^d_p)\simeq\oplus_{\mathbb{N}}\mathbb{R}$$

Thus

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

with product topology \rightarrow Polish space.

Probability Theory on $S'(\mathbb{Q}_p^d)$ is super!

Recall that d = 3, $[\phi] = \frac{3-\epsilon}{4}$. Now let

 $r \in \mathbb{Z}$ UV cut-off, $r
ightarrow -\infty$

- $r \in \mathbb{Z}$ UV cut-off, $r
 ightarrow -\infty$
- $s \in \mathbb{Z}$ IR cut-off, $s o \infty$

- $r \in \mathbb{Z}$ UV cut-off, $r
 ightarrow -\infty$
- $s\in\mathbb{Z}$ IR cut-off, $s
 ightarrow\infty$

The regularized Gaussian measure μ_{C_r} is the law of

$$\phi_r(x) = \sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- $r \in \mathbb{Z}$ UV cut-off, $r \to -\infty$
- $s\in\mathbb{Z}$ IR cut-off, $s
 ightarrow\infty$

The regularized Gaussian measure μ_{C_r} is the law of

$$\phi_r(x) = \sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Sample fields are true functions that are locally constant on scale L^r . These measures are scaled copies of each other.

- $r \in \mathbb{Z}$ UV cut-off, $r
 ightarrow -\infty$
- $s\in\mathbb{Z}$ IR cut-off, $s
 ightarrow\infty$

The regularized Gaussian measure μ_{C_r} is the law of

$$\phi_r(x) = \sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Sample fields are true functions that are locally constant on scale L^r . These measures are scaled copies of each other. If the law of $\phi(\cdot)$ is μ_{C_0} , then that of $L^{-r[\phi]}\phi(L^r \cdot)$ is μ_{C_r} . Fix the parameters g, μ and let $g_r = L^{-(3-4[\phi])r}g$ and $\mu_r = L^{-(3-2[\phi])r}\mu$.

Fix the parameters g, μ and let $g_r = L^{-(3-4[\phi])r}g$ and $\mu_r = L^{-(3-2[\phi])r}\mu$.

Let $\Lambda_s = \overline{B}(0, L^s) \subset \mathbb{Q}^3_p$, IR (or volume) cut-off.

Fix the parameters g, μ and let $g_r = L^{-(3-4[\phi])r}g$ and $\mu_r = L^{-(3-2[\phi])r}\mu$.

Let $\Lambda_s = \overline{B}(0, L^s) \subset \mathbb{Q}_p^3$, IR (or volume) cut-off.

Let

$$V_{r,s}(\phi) = \int_{\Lambda_s} \{g_r : \phi^4 :_{C_r} (x) + \mu_r : \phi^2 :_{C_r} (x)\} d^3x$$

and define the probability measure

$$d\nu_{r,s}(\phi) = \frac{1}{\mathcal{Z}_{r,s}} e^{-V_{r,s}(\phi)} d\mu_{C_r}(\phi)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\phi_{r,s}$ be the random distribution in $S'(\mathbb{Q}_p^3)$ sampled according to $\nu_{r,s}$ and define the squared field $N_r[\phi_{r,s}^2]$ which is a deterministic function(al) of $\phi_{r,s}$, with values in $S'(\mathbb{Q}_p^3)$, given by

$$N_{r}[\phi_{r,s}^{2}](j) = Z_{2}^{r} \int_{\mathbb{Q}_{p}^{3}} \{Y_{2} : \phi_{r,s}^{2} : C_{r}(x) - Y_{0}L^{-2r[\phi]}\} j(x) d^{3}x$$

for suitable parameters Z_2 , Y_0 , Y_2 .

Let $\phi_{r,s}$ be the random distribution in $S'(\mathbb{Q}_p^3)$ sampled according to $\nu_{r,s}$ and define the squared field $N_r[\phi_{r,s}^2]$ which is a deterministic function(al) of $\phi_{r,s}$, with values in $S'(\mathbb{Q}_p^3)$, given by

$$N_{r}[\phi_{r,s}^{2}](j) = Z_{2}^{r} \int_{\mathbb{Q}_{p}^{3}} \{Y_{2} : \phi_{r,s}^{2} : C_{r}(x) - Y_{0}L^{-2r[\phi]}\} j(x) d^{3}x$$

for suitable parameters Z_2 , Y_0 , Y_2 .

The main result concerns the limit law of the pair $(\phi_{r,s}, N_r[\phi_{r,s}^2])$ in $S'(\mathbb{Q}_p^3) \times S'(\mathbb{Q}_p^3)$ when $r \to -\infty$, $s \to \infty$ (in any order).

For the precise statement we need the approximate fixed point value

$$ar{g}_*=rac{p^\epsilon-1}{36L^\epsilon(1-p^{-3})}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho > 0, \ \exists L_0, \ \forall L \ge L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon \in (0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \\ \exists \text{ fonctions } \mu(g), \ Y_0(g), \ Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}) \text{ such } \\ \text{that if one lets } \mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \text{ and } \\ Z_2 = L^{-([\phi^2] - 2[\phi])} \text{ then the joint law of } (\phi_{r,s}, N_r[\phi^2_{r,s}]) \text{ converge } \\ \text{weakly and in the sense of moments to that of a pair } (\phi, N[\phi^2]) \\ \text{ such that: } \end{cases}$

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho > 0, \ \exists L_0, \ \forall L \ge L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon \in (0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \\ \exists \text{ fonctions } \mu(g), \ Y_0(g), \ Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}) \text{ such } \\ \text{that if one lets } \mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \text{ and } \\ Z_2 = L^{-([\phi^2] - 2[\phi])} \text{ then the joint law of } (\phi_{r,s}, N_r[\phi^2_{r,s}]) \text{ converge } \\ \text{weakly and in the sense of moments to that of a pair } (\phi, N[\phi^2]) \\ \text{such that:} \end{cases}$

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho > 0, \ \exists L_0, \ \forall L \ge L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon \in (0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \\ \exists \text{ fonctions } \mu(g), \ Y_0(g), \ Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}) \text{ such } \\ \text{that if one lets } \mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \text{ and } \\ Z_2 = L^{-([\phi^2] - 2[\phi])} \text{ then the joint law of } (\phi_{r,s}, N_r[\phi^2_{r,s}]) \text{ converge } \\ \text{weakly and in the sense of moments to that of a pair } (\phi, N[\phi^2]) \\ \text{ such that: } \end{cases}$

- $\begin{array}{l} \textcircled{2} \quad \langle \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}) \rangle^{\mathrm{T}} < 0 \text{ i.e., } \phi \text{ is } \\ \text{non-Gaussian. Here, } \mathbf{1}_{\mathbb{Z}_p^3} \text{ denotes the indicator function of } \\ \overline{B}(0,1). \end{array}$

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho > 0, \ \exists L_0, \ \forall L \ge L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon \in (0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \\ \exists \text{ fonctions } \mu(g), \ Y_0(g), \ Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}) \text{ such } \\ \text{that if one lets } \mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \text{ and } \\ Z_2 = L^{-([\phi^2] - 2[\phi])} \text{ then the joint law of } (\phi_{r,s}, N_r[\phi^2_{r,s}]) \text{ converge } \\ \text{weakly and in the sense of moments to that of a pair } (\phi, N[\phi^2]) \\ \text{ such that: } \end{cases}$

- $\begin{array}{l} \textcircled{2} \quad \langle \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}) \rangle^{\mathrm{T}} < 0 \text{ i.e., } \phi \text{ is } \\ \text{non-Gaussian. Here, } \mathbf{1}_{\mathbb{Z}_p^3} \text{ denotes the indicator function of } \\ \overline{B}(0,1). \end{array}$
- $(N[\phi^2](\mathbf{1}_{\mathbb{Z}^3_p}), N[\phi^2](\mathbf{1}_{\mathbb{Z}^3_p}))^{\mathrm{T}} = 1.$

The mixed correlation functions satisfy, in the sense of distributions,

$$\langle \phi(L^{-k}x_1)\cdots\phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1)\cdots N[\phi^2](L^{-k}y_m)\rangle$$
$$= L^{-(n[\phi]+m[\phi^2])k}\langle \phi(x_1)\cdots\phi(x_n)N[\phi^2](y_1)\cdots N[\phi^2](y_m)\rangle$$

The mixed correlation functions satisfy, in the sense of distributions,

$$\langle \phi(L^{-k}x_1)\cdots\phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1)\cdots N[\phi^2](L^{-k}y_m)\rangle$$
$$= L^{-(n[\phi]+m[\phi^2])k}\langle \phi(x_1)\cdots\phi(x_n)N[\phi^2](y_1)\cdots N[\phi^2](y_m)\rangle$$

The law $\nu_{\phi \times \phi^2}$ of $(\phi, N[\phi^2])$ is independent of g: universality.
Theorem 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $[\phi^2]$ are independent of the arbitrary factor L.

Theorem 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $[\phi^2]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$\langle \phi(x)\phi(y)
angle = rac{c_1}{|x-y|_p^{2[\phi]}}$$

 $\langle N[\phi^2](x) \ N[\phi^2](y)
angle = rac{c_2}{|x-y|_p^{2[\phi^2]}}$

Theorem 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $[\phi^2]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$\langle \phi(x)\phi(y)
angle = rac{c_1}{|x-y|_{
ho}^{2[\phi]}}$$

 $\langle N[\phi^2](x) \ N[\phi^2](y)
angle = rac{c_2}{|x-y|_{
ho}^{2[\phi^2]}}$

Note that $2[\phi^2] = 3 - \frac{1}{3}\epsilon + o(\epsilon) \rightarrow \text{still } L^{1,\text{loc}}$!

・ロト ・ 西 ト ・ 田 ト ・ 日 ・ うへの

Relation to previous statistical mechanics point of view:

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

Relation to previous statistical mechanics point of view: $\Lambda_s = \overline{B}(0, L^s) \subset \mathbb{Q}_p^3$ can also be seen as subset of $\mathbb{L} = \mathbb{L}_0$.

Relation to previous statistical mechanics point of view: $\Lambda_s = \overline{B}(0, L^s) \subset \mathbb{Q}_p^3$ can also be seen as subset of $\mathbb{L} = \mathbb{L}_0$. Unit cutoff covariance C_0 can also be seen as lattice covariance $C_0 = (C_{0,xy})_{x,y \in \mathbb{L}}$. More precisely

$$C_{0,\mathbf{x}\mathbf{y}} = \frac{1 - p^{-(3-2[\phi])}}{1 - p^{-2[\phi]}} \times \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}$$

for $\mathbf{x} \neq \mathbf{y}$ and

$$C_{0,{\sf x}{\sf x}} = rac{1-
ho^{-3}}{1-
ho^{-2[\phi]}} \; .$$

・ロト 《四下 《田下 《田下 《日下

Relation to previous statistical mechanics point of view: $\Lambda_s = \overline{B}(0, L^s) \subset \mathbb{Q}_p^3$ can also be seen as subset of $\mathbb{L} = \mathbb{L}_0$. Unit cutoff covariance C_0 can also be seen as lattice covariance $C_0 = (C_{0,xy})_{x,y \in \mathbb{L}}$. More precisely

$$C_{0,\mathbf{x}\mathbf{y}} = \frac{1 - p^{-(3-2[\phi])}}{1 - p^{-2[\phi]}} \times \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}$$

for $\mathbf{x} \neq \mathbf{y}$ and

$$\mathcal{C}_{0,{f x}{f x}}=rac{1-{m p}^{-3}}{1-{m p}^{-2[\phi]}}\;.$$

Define the new matrix $A = (A_{xy})_{xy \in \mathbb{L}}$ by

$$A_{\mathbf{x}\mathbf{y}} = \lim_{s o \infty} (C_0|_{\Lambda_s})_{\mathbf{x}\mathbf{y}}^{-1}$$

Then

$$A_{\mathbf{x}\mathbf{y}} = - \; rac{p^{3-2[\phi]}-1}{1-p^{-(6-2[\phi])}} imes rac{1}{d(\mathbf{x},\mathbf{y})^{3+\sigma}}$$

for $\mathbf{x} \neq \mathbf{y}$ and

$$A_{{f x}{f x}} = rac{1-p^{-3}}{1-p^{-2[\phi]}} \; .$$

Here again $\sigma = 3 - 2[\phi] = \frac{3+\epsilon}{2}$.

Then

$$A_{xy} = - \; rac{p^{3-2[\phi]}-1}{1-p^{-(6-2[\phi])}} imes rac{1}{d(x,y)^{3+\sigma}}$$

for $\mathbf{x} \neq \mathbf{y}$ and

$$A_{xx} = rac{1-p^{-3}}{1-p^{-2[\phi]}}$$

Here again $\sigma = 3 - 2[\phi] = \frac{3+\epsilon}{2}$.

We proved that $\lim_{s\to\infty} \nu_{0,s}$ is the same infinite volume lattice measure as previous ν_c for suitable a, b, β_c, K related to $g, \mu(g)$.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

The renormalization group idea in a nutshell: Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $RG : \mathcal{E} \to \mathcal{E}$, such that $\mathcal{Z}(RG(\vec{V})) = \mathcal{Z}(\vec{V})$, and $\lim_{n\to\infty} RG^n(\vec{V}) = \vec{V}_*$ with $\mathcal{Z}(\vec{V}_*)$ easy.

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $RG : \mathcal{E} \to \mathcal{E}$, such that $\mathcal{Z}(RG(\vec{V})) = \mathcal{Z}(\vec{V})$, and $\lim_{n\to\infty} RG^n(\vec{V}) = \vec{V}_*$ with $\mathcal{Z}(\vec{V}_*)$ easy.

Example (Landen-Gauss): $\vec{V} = (a, b) \in \mathcal{E} = (0, \infty)^2$

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $RG : \mathcal{E} \to \mathcal{E}$, such that $\mathcal{Z}(RG(\vec{V})) = \mathcal{Z}(\vec{V})$, and $\lim_{n\to\infty} RG^n(\vec{V}) = \vec{V}_*$ with $\mathcal{Z}(\vec{V}_*)$ easy.

Example (Landen-Gauss): $\vec{V} = (a, b) \in \mathcal{E} = (0, \infty)^2$

$$\mathcal{Z}(ec{V}) = \int_{0}^{rac{\pi}{2}} rac{d heta}{\sqrt{a^2\cos^2 heta + b^2\sin^2 heta}}$$

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $RG : \mathcal{E} \to \mathcal{E}$, such that $\mathcal{Z}(RG(\vec{V})) = \mathcal{Z}(\vec{V})$, and $\lim_{n\to\infty} RG^n(\vec{V}) = \vec{V}_*$ with $\mathcal{Z}(\vec{V}_*)$ easy.

Example (Landen-Gauss): $\vec{V} = (a, b) \in \mathcal{E} = (0, \infty)^2$

$$\mathcal{Z}(ec{V}) = \int_{0}^{rac{\pi}{2}} rac{d heta}{\sqrt{a^2\cos^2 heta + b^2\sin^2 heta}}$$

・ロト ・ 戸 ・ ・ 三 ・ ・ 三 ・ うへつ

Take $RG(a, b) = \left(\frac{a+b}{2}, \sqrt{ab}\right)$.

In usual rigorous RG couplings are constant in space

$$\int \{g: \phi^4: (x) + \mu: \phi^2: (x)\} d^d x$$

In usual rigorous RG couplings are constant in space

$$\int \{g: \phi^4: (x) + \mu: \phi^2: (x)\} d^d x$$

ACG 2013 \rightarrow inhomogeneous RG for space-dependent couplings.

$$\int \{g(x): \phi^4: (x) + \mu(x): \phi^2: (x)\} d^d x$$

e.g., $g(x) = g + \delta g(x)$, with $\delta g(x)$ a local perturbation such as test function.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In usual rigorous RG couplings are constant in space

$$\int \{g: \phi^4: (x) + \mu: \phi^2: (x)\} d^d x$$

ACG 2013 \rightarrow inhomogeneous RG for space-dependent couplings.

$$\int \{g(x): \phi^4: (x) + \mu(x): \phi^2: (x)\} d^d x$$

e.g., $g(x) = g + \delta g(x)$, with $\delta g(x)$ a local perturbation such as test function.

Rigorous nonperturbative version of the local RG: Wilson-Kogut PR 1974, Drummond-Shore PRD 1979, Jack-Osborn NPB 1990,...

used for generalizations of Zamolodchikov's c- "Theorem", study of scale versus conformal invariance, AdS/CFT,...

$$\begin{split} \mathcal{S}_{r,s}^{\mathrm{T}}(f) &:= \log \mathbb{E}_{\nu_{r,s}} e^{i\phi(f)} = \log \\ \frac{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx + \int \phi(x) f(x) dx\right)}{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx\right)} \end{split}$$

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

$$\begin{split} \mathcal{S}_{r,s}^{\mathrm{T}}(f) &:= \log \mathbb{E}_{\nu_{r,s}} e^{i\phi(f)} = \log \\ \frac{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx + \int \phi(x) f(x) dx\right)}{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx\right)} \\ &= \log \frac{\int d\mu_{C_0}(\phi) \mathcal{I}^{(r,r)}[f](\phi)}{\int d\mu_{C_0}(\phi) \mathcal{I}^{(r,r)}[0](\phi)} \end{split}$$

$$\begin{split} \mathcal{S}_{r,s}^{\mathrm{T}}(f) &:= \log \mathbb{E}_{\nu_{r,s}} e^{i\phi(f)} = \log \\ \frac{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx + \int \phi(x) f(x) dx\right)}{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx\right)} \\ &= \log \frac{\int d\mu_{C_0}(\phi) \mathcal{I}^{(r,r)}[f](\phi)}{\int d\mu_{C_0}(\phi) \mathcal{I}^{(r,r)}[0](\phi)} =: \log \frac{\mathcal{Z}(\vec{V}^{(r,r)}[f])}{\mathcal{Z}(\vec{V}^{(r,r)}[0])} \end{split}$$

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

$$\begin{split} \mathcal{S}_{r,s}^{\mathrm{T}}(f) &:= \log \mathbb{E}_{\nu_{r,s}} e^{i\phi(f)} = \log \\ \frac{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx + \int \phi(x) f(x) dx\right)}{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx\right)} \\ &= \log \frac{\int d\mu_{C_0}(\phi) \mathcal{I}^{(r,r)}[f](\phi)}{\int d\mu_{C_0}(\phi) \mathcal{I}^{(r,r)}[0](\phi)} =: \log \frac{\mathcal{Z}(\vec{V}^{(r,r)}[f])}{\mathcal{Z}(\vec{V}^{(r,r)}[0])} \\ \end{split}$$
 with

$$\mathcal{I}^{(r,r)}[f](\phi) = \exp\left(-\int_{\Lambda_{s-r}} \{g:\phi^4:_0(x) + \mu:\phi^2:_0\} d^3x + L^{(3-[\phi])r} \int \phi(x) f(L^{-r}x) d^3x\right)$$

2nd step: define inhomogeneous RG

Fluctuation covariance $\Gamma := C_0 - C_1$.

Associated Gaussian measure is the law of the fluctuation field

$$\zeta(x) = \sum_{0 \leq k < \ell} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

L-blocks (closed balls of radius L) are independent. Hence

2nd step: define inhomogeneous RG

Fluctuation covariance $\Gamma := C_0 - C_1$.

Associated Gaussian measure is the law of the fluctuation field

$$\zeta(x) = \sum_{0 \leq k < \ell} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

L-blocks (closed balls of radius L) are independent. Hence

$$\begin{split} \int \mathcal{I}^{(r,r)}[f](\phi) \ d\mu_{C_0}(\phi) &= \int \int \mathcal{I}^{(r,r)}[f](\zeta + \psi) \ d\mu_{\Gamma}(\zeta) d\mu_{C_1}(\psi) \\ &= \int \mathcal{I}^{(r,r+1)}[f](\phi) \ d\mu_{C_0}(\phi) \end{split}$$

with new integrand

$$\mathcal{I}^{(r,r+1)}[f](\phi) = \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L\cdot)) \ d\mu_{\Gamma}(\zeta)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Need to extract vacuum renormalization \rightarrow better definition is

$$\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L \cdot)) \ d\mu_{\Gamma}(\zeta)$$

so that

$$\int \mathcal{I}^{(r,r)}[f](\phi) \ d\mu_{C_0}(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \ d\mu_{C_0}(\phi)$$

Need to extract vacuum renormalization \rightarrow better definition is

$$\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L \cdot)) \ d\mu_{\Gamma}(\zeta)$$

so that

$$\int \mathcal{I}^{(r,r)}[f](\phi) \ d\mu_{C_0}(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \ d\mu_{C_0}(\phi)$$

Repeat: $\mathcal{I}^{(r,r)} \to \mathcal{I}^{(r,r+1)} \to \mathcal{I}^{(r,r+2)} \to \cdots \to \mathcal{I}^{(r,s)}$

Need to extract vacuum renormalization \rightarrow better definition is

$$\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L \cdot)) \, d\mu_{\Gamma}(\zeta)$$

so that

$$\int \mathcal{I}^{(r,r)}[f](\phi) \ d\mu_{C_0}(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \ d\mu_{C_0}(\phi)$$

Repeat: $\mathcal{I}^{(r,r)} \to \mathcal{I}^{(r,r+1)} \to \mathcal{I}^{(r,r+2)} \to \cdots \to \mathcal{I}^{(r,s)}$

One must control

$$\mathcal{S}^{\mathrm{T}}(f) = \lim_{r o -\infty top s o \infty \ r \le q < s} \left(\delta b(\mathcal{I}^{(r,q)}[f]) - \delta b(\mathcal{I}^{(r,q)}[0])
ight)$$

limit of logarithms of characteristic functions.

Use a Brydges-Yau lift

Use a Brydges-Yau lift

 $\vec{V}^{(r,q)} \xrightarrow{RG_{\text{inhom}}} \vec{V}^{(r,q+1)}$ $\begin{array}{ccc} \downarrow & \downarrow \\ \tau^{(r,q)} & \longrightarrow & \mathcal{I}^{(r,q+1)} \end{array}$ $\mathcal{I}^{(r,q)}(\phi) = \prod \left[e^{f_{\Delta}\phi_{\Delta}} \times \right]$ $\Delta \subset \Lambda_{s-a}$ $\{\exp\left(-\beta_{4,\Delta}:\phi_{\Delta}^{4}:c_{0}-\beta_{3,\Delta}:\phi_{\Delta}^{3}:c_{0}-\beta_{2,\Delta}:\phi_{\Delta}^{2}:c_{0}-\beta_{1,\Delta}:\phi_{\Delta}^{1}:c_{0}\right)\}$ $\times (1 + W_{5\Lambda} : \phi_{\Lambda}^5 : c_0 + W_{6\Lambda} : \phi_{\Lambda}^6 : c_0)$ $+R_{\Lambda}(\phi_{\Lambda})\}]$

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Use a Brydges-Yau lift

 $\vec{V}^{(r,q)} \xrightarrow{RG_{\text{inhom}}} \vec{V}^{(r,q+1)}$ $\begin{array}{ccc} \downarrow & & \downarrow \\ \mathcal{T}^{(r,q)} & \longrightarrow & \mathcal{T}^{(r,q+1)} \end{array}$ $\mathcal{I}^{(r,q)}(\phi) = \prod \left[e^{f_{\Delta}\phi_{\Delta}} \times \right]$ $\Delta \subset \Lambda_{s-a}$ $\{\exp\left(-\beta_{4,\Delta}:\phi_{\Delta}^{4}:c_{0}-\beta_{3,\Delta}:\phi_{\Delta}^{3}:c_{0}-\beta_{2,\Delta}:\phi_{\Delta}^{2}:c_{0}-\beta_{1,\Delta}:\phi_{\Delta}^{1}:c_{0}\right)\}$ $\times (1 + W_{5\Lambda} : \phi_{\Lambda}^5 : c_0 + W_{6\Lambda} : \phi_{\Lambda}^6 : c_0)$ $+R_{\Lambda}(\phi_{\Lambda})\}]$

Dynamical variable is $ec{V}=(V_{\Delta})_{\Delta\in\mathbb{L}_0}$ with

 $V_{\Delta} = (\beta_{4,\Delta}, \beta_{3,\Delta}, \beta_{2,\Delta}, \beta_{1,\Delta}, W_{5,\Delta}, W_{6,\Delta}, f_{\Delta}, R_{\Delta})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RG_{inhom} acts on \mathcal{E}_{inhom} , essentially,

$$\prod_{\Delta \in \mathbb{L}_0} \left\{ \mathbb{C}^7 \times \mathcal{C}^9(\mathbb{R},\mathbb{C}) \right\}$$

RG_{inhom} acts on \mathcal{E}_{inhom} , essentially,

$$\prod_{\Delta \in \mathbb{L}_0} \left\{ \mathbb{C}^7 \times C^9(\mathbb{R}, \mathbb{C}) \right\}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Stable subspaces

 $\mathcal{E}_{\text{hom}} \subset \mathcal{E}_{\text{inhom}}$: spatially constant data. $\mathcal{E} \subset \mathcal{E}_{\text{hom}}$: even potential, i.e., g, μ 's only and R even function.

Let RG be induced action of RG_{inhom} on \mathcal{E} .

3rd step: stabilize bulk (homogeneous) evolution Show that $\forall q \in \mathbb{Z}$, $\lim_{r \to -\infty} \vec{V}^{(r,q)}[0]$ exists, i.e.,

$$\lim_{r\to-\infty} RG^{q-r}\left(\vec{V}^{(r,r)}[0]\right)$$

exists.

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

3rd step: stabilize bulk (homogeneous) evolution Show that $\forall q \in \mathbb{Z}$, $\lim_{r \to -\infty} \vec{V}^{(r,q)}[0]$ exists, i.e.,

$$\lim_{r\to-\infty} RG^{q-r}\left(\vec{V}^{(r,r)}[0]\right)$$

exists.

$$RG \begin{cases} g' = \mathcal{L}^{\epsilon}g - \mathcal{A}_{1}g^{2} + \cdots \\ \mu' = \mathcal{L}^{\frac{3+\epsilon}{2}}\mu - \mathcal{A}_{2}g^{2} - \mathcal{A}_{3}g\mu + \cdots \\ R' = \mathcal{L}^{(g,\mu)}(R) + \cdots \end{cases}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

3rd step: stabilize bulk (homogeneous) evolution Show that $\forall q \in \mathbb{Z}$, $\lim_{r \to -\infty} \vec{V}^{(r,q)}[0]$ exists, i.e.,

$$\lim_{r\to-\infty} RG^{q-r}\left(\vec{V}^{(r,r)}[0]\right)$$

exists.

$$RG \begin{cases} g' = L^{\epsilon}g - A_1g^2 + \cdots \\ \mu' = L^{\frac{3+\epsilon}{2}}\mu - A_2g^2 - A_3g\mu + \cdots \\ R' = \mathcal{L}^{(g,\mu)}(R) + \cdots \end{cases}$$

Tadpole graph with mass insertion

$$A_3 = 12L^{3-2[\phi]} \int_{\mathbb{Q}^3_{\rho}} \Gamma(0,x)^2 \ d^3x$$

is main culprit for anomalous scaling dimension $[\phi^2] - 2[\phi] > 0.$
Irwin's proof \rightarrow stable manifold $W^{\rm s}$

Irwin's proof \rightarrow stable manifold W^{s} Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*} . Irwin's proof \rightarrow stable manifold W^{s} Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*} . Construct unstable manifold W^{u} , intersect with W^{s} , transverse at v_{*} .

Irwin's proof \rightarrow stable manifold W^{s}

Restriction to $W^{s} \rightarrow \text{contraction} \rightarrow \text{IR fixed point } v_{*}$.

Construct unstable manifold W^{u} , intersect with W^{s} , transverse at v_{*} .

Here, $\vec{V}^{(r,r)}[0]$ is independent of *r*: strict scaling limit of fixed model on unit lattice.

Must be chosen in $W^{s} \rightarrow \mu(g)$ critical mass.

Irwin's proof \rightarrow stable manifold $W^{\rm s}$

Restriction to $W^{s} \rightarrow \text{contraction} \rightarrow \text{IR fixed point } v_{*}$.

Construct unstable manifold W^{u} , intersect with W^{s} , transverse at v_{*} .

Here, $\vec{V}^{(r,r)}[0]$ is independent of r: strict scaling limit of fixed model on unit lattice.

Must be chosen in $W^{\mathrm{s}} o \mu(g)$ critical mass.

Thus

$$orall q \in \mathbb{Z}, \qquad \lim_{r o -\infty} ec{V}^{(r,q)}[0] = v_*$$

Tangent spaces at fixed point: E^{s} and E^{u} . $E^{u} = \mathbb{C}e_{u}$, with e_{u} eigenvector of $D_{v_{*}}RG$ for eigenvalue $\alpha_{u} = L^{3-2[\phi]} \times Z_{2} =: L^{3-[\phi^{2}]}$.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$ uniformly in r.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$ uniformly in r. 1) $\sum_{x \in G} \zeta_x = 0$ a.s. \rightarrow deviation is 0 for q <local constancy scale of test function f

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$ uniformly in r.

1) $\sum_{x \in G} \zeta_x = 0$ a.s. \rightarrow deviation is 0 for q <local constancy scale of test function f.

2) Deviation resides in closed unit ball containing origin for q >radius of support of $f \rightarrow$ exponential decay for large q.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$ uniformly in r.

1) $\sum_{x \in G} \zeta_x = 0$ a.s. \rightarrow deviation is 0 for q < local constancy scale of test function f.

2) Deviation resides in closed unit ball containing origin for q >radius of support of $f \rightarrow$ exponential decay for large q. For source term with ϕ^2 add

$$Y_2 Z_2^r \int :\phi^2 :_{C_r} (x)j(x)d^3x$$

to potential. $S_{r,s}^{T}(f,j)$ now involves two test functions. After rescaling to unit lattice/cut-off

$$Y_2\alpha_{\mathrm{u}}^r\int:\phi^2:_{C_0}(x)j(L^{-r}x)d^3x$$

to be combined with μ into $(\beta_{2,\Delta})_{\Delta \in \mathbb{L}_0}$ space-dependent mass.

In order to replay same sequence of moves with j present,

In order to replay same sequence of moves with j present, construct

$$\Psi(\mathbf{v},\mathbf{w}) = \lim_{n\to\infty} RG^n(\mathbf{v} + \alpha_{\mathrm{u}}^{-n}\mathbf{w})$$

for $v \in W^{s}$ and all direction w (especially $\int : \phi^{2} :$).

In order to replay same sequence of moves with j present, construct

$$\Psi(\mathbf{v},\mathbf{w}) = \lim_{n\to\infty} RG^n(\mathbf{v} + \alpha_{\mathrm{u}}^{-n}\mathbf{w})$$

for $v \in W^{\mathrm{s}}$ and all direction w (especially $\int : \phi^2 :$).

For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi(v, \alpha_{u}w) = RG(\Psi(v, w))$.

In order to replay same sequence of moves with j present, construct

$$\Psi(\mathbf{v},\mathbf{w}) = \lim_{n\to\infty} RG^n(\mathbf{v} + \alpha_{\mathrm{u}}^{-n}\mathbf{w})$$

for $v \in W^{s}$ and all direction w (especially $\int : \phi^{2} :$).

For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi(v, \alpha_{u}w) = RG(\Psi(v, w)).$

If there were no W^{s} directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.

In order to replay same sequence of moves with j present, construct

$$\Psi(v,w) = \lim_{n\to\infty} RG^n(v + \alpha_{\rm u}^{-n}w)$$

for $v \in W^{s}$ and all direction w (especially $\int : \phi^{2} :$).

For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi(v, \alpha_{u}w) = RG(\Psi(v, w)).$

If there were no W^{s} directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.

 $\Psi(v, w)$ is holomorphic in v and w. Essential for probabilistic interpretation of $(\phi, N[\phi^2])$ as pair of random variables in $S'(\mathbb{Q}_p^3)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

References:

A.A., A. Chandra, G. Guadagni, "Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions", arXiv 2013.

A.A., "QFT, RG, and all that, for mathematicians, in eleven pages", arXiv 2013.

A.A., "Towards three-dimensional conformal probability", arXiv 2015.

A.A., "A second-quantized Kolmogorov-Chentsov theorem", arXiv 2016.

References:

A.A., A. Chandra, G. Guadagni, "Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions", arXiv 2013.

A.A., "QFT, RG, and all that, for mathematicians, in eleven pages", arXiv 2013.

A.A., "Towards three-dimensional conformal probability", arXiv 2015.

A.A., "A second-quantized Kolmogorov-Chentsov theorem", arXiv 2016.

Thank you for your attention.