A proof of Wilson's epsilon expansion for a toy model of three-dimensional conformal field theory

Abdelmalek Abdesselam
Mathematics Department, University of Virginia

Joint with A. Chandra (Imperial) and G. Guadagni (UVa)

Probability Seminar at Columbia University
September 8, 2017
(1) Generalities about Ising and phi-four ferromagnets
(2) Results and conjectures
(3) A new method: space-dependent renormalization group

Some definitions and notations:

Some definitions and notations:

Let Q be the set of probability measures $\rho_{a, b}$ on \mathbb{R} given by

$$
d \rho_{a, b}(x)=\frac{1}{Z_{a, b}} \exp \left(-a x^{4}-b x^{2}\right) d x
$$

with $a>0$ and $b \in \mathbb{R}$.

Some definitions and notations:

Let Q be the set of probability measures $\rho_{a, b}$ on \mathbb{R} given by

$$
d \rho_{a, b}(x)=\frac{1}{Z_{a, b}} \exp \left(-a x^{4}-b x^{2}\right) d x
$$

with $a>0$ and $b \in \mathbb{R}$.
These are the single-site ϕ^{4}-type measures with a quartic potential.

Some definitions and notations:
Let Q be the set of probability measures $\rho_{a, b}$ on \mathbb{R} given by

$$
d \rho_{a, b}(x)=\frac{1}{Z_{a, b}} \exp \left(-a x^{4}-b x^{2}\right) d x
$$

with $a>0$ and $b \in \mathbb{R}$.
These are the single-site ϕ^{4}-type measures with a quartic potential.
Let \bar{Q} denote the closure in the set of Borel probability measures for the topology of weak convergence. It is obtained by adding centered Gaussians ($a=0, b>0$), the Dirac mass at the origin δ_{0} and the measures of the form $\frac{1}{2}\left(\delta_{\lambda}+\delta_{-\lambda}\right)$ with $\lambda>0$.

Some definitions and notations:
Let Q be the set of probability measures $\rho_{a, b}$ on \mathbb{R} given by

$$
d \rho_{a, b}(x)=\frac{1}{Z_{a, b}} \exp \left(-a x^{4}-b x^{2}\right) d x
$$

with $a>0$ and $b \in \mathbb{R}$.
These are the single-site ϕ^{4}-type measures with a quartic potential.
Let \bar{Q} denote the closure in the set of Borel probability measures for the topology of weak convergence. It is obtained by adding centered Gaussians ($a=0, b>0$), the Dirac mass at the origin δ_{0} and the measures of the form $\frac{1}{2}\left(\delta_{\lambda}+\delta_{-\lambda}\right)$ with $\lambda>0$.
$\lambda=1 \longleftrightarrow$ standard Ising spins.

Some definitions and notations:
Let Q be the set of probability measures $\rho_{a, b}$ on \mathbb{R} given by

$$
d \rho_{a, b}(x)=\frac{1}{Z_{a, b}} \exp \left(-a x^{4}-b x^{2}\right) d x
$$

with $a>0$ and $b \in \mathbb{R}$.
These are the single-site ϕ^{4}-type measures with a quartic potential.
Let \bar{Q} denote the closure in the set of Borel probability measures for the topology of weak convergence. It is obtained by adding centered Gaussians ($a=0, b>0$), the Dirac mass at the origin δ_{0} and the measures of the form $\frac{1}{2}\left(\delta_{\lambda}+\delta_{-\lambda}\right)$ with $\lambda>0$.
$\lambda=1 \longleftrightarrow$ standard Ising spins.
Let $\bar{Q}_{D W}$ correspond to the double-well measures: $\rho_{a, b}$ with $a>0, b<0$ or $\frac{1}{2}\left(\delta_{\lambda}+\delta_{-\lambda}\right)$ with $\lambda>0$.

Let \mathbb{L} be a countably infinite set (the lattice) and $J=\left(J_{x y}\right)_{x, y \in \mathbb{L}}$ be an infinite matrix with $J_{\mathrm{xx}}=0$, $J_{x y}=J_{y x} \geq 0$. Also assume

$$
\|J\|_{\infty, 1}:=\sup _{\mathrm{x}} \sum_{\mathrm{y}} J_{\mathrm{xy}}<\infty .
$$

Let \mathbb{L} be a countably infinite set (the lattice) and $J=\left(J_{x y}\right)_{x, y \in \mathbb{L}}$ be an infinite matrix with $J_{x x}=0$, $J_{x y}=J_{y x} \geq 0$. Also assume

$$
\|J\|_{\infty, 1}:=\sup _{\mathbf{x}} \sum_{\mathbf{y}} J_{\mathrm{xy}}<\infty
$$

Pick $\rho \in \bar{Q}_{D W}$, let $\beta, h \geq 0$, and for Λ finite subset of \mathbb{L} and $\phi_{\Lambda} \in \mathbb{R}^{\wedge}$ define

$$
H_{\Lambda}\left(\phi_{\Lambda}\right)=-\sum_{x, y \in \Lambda} J_{x y} \phi_{x} \phi_{\mathbf{y}}-h \sum_{x \in \Lambda} \phi_{\mathbf{x}} .
$$

Let \mathbb{L} be a countably infinite set (the lattice) and $J=\left(J_{\mathrm{xy}}\right)_{\mathrm{x}, \mathrm{y} \in \mathbb{L}}$ be an infinite matrix with $J_{\mathrm{xx}}=0$, $J_{x y}=J_{y x} \geq 0$. Also assume

$$
\|J\|_{\infty, 1}:=\sup _{\mathrm{x}} \sum_{\mathrm{y}} J_{\mathrm{xy}}<\infty .
$$

Pick $\rho \in \bar{Q}_{D W}$, let $\beta, h \geq 0$, and for Λ finite subset of \mathbb{L} and $\phi_{\Lambda} \in \mathbb{R}^{\wedge}$ define

$$
H_{\Lambda}\left(\phi_{\Lambda}\right)=-\sum_{\mathbf{x}, \mathbf{y} \in \Lambda} J_{\mathbf{x y}} \phi_{\mathbf{x}} \phi_{\mathbf{y}}-h \sum_{\mathbf{x} \in \Lambda} \phi_{\mathbf{x}}
$$

This gives a Borel probability measure $\nu_{\Lambda, \beta, h}$ on lattice fields $\phi \in \mathbb{R}^{\mathbb{L}}$ where $\left.\phi\right|_{\mathbb{L} \backslash \Lambda}=0$ and $\phi_{\Lambda}=\left.\phi\right|_{\Lambda}$ is sampled according to the measure

$$
\frac{1}{Z_{\Lambda, \beta, h}} e^{-\beta H_{\Lambda}\left(\phi_{\Lambda}\right)} \prod_{\mathbf{x} \in \Lambda} d \rho\left(\phi_{\mathbf{x}}\right)
$$

For a large class of models one can show existence of infinite volume limit, i.e., probability measure $\nu_{\beta, h}$ on $\mathbb{R}^{\mathbb{L}}$ such that for all sequences $\Lambda_{n} \nearrow \mathbb{L}, \nu_{\Lambda_{n}, \beta, h} \longrightarrow \nu_{\beta, h}$ weakly and in sense of moments.

For a large class of models one can show existence of infinite volume limit, i.e., probability measure $\nu_{\beta, h}$ on $\mathbb{R}^{\mathbb{L}}$ such that for all sequences $\Lambda_{n} \nearrow \mathbb{L}, \nu_{\Lambda_{n}, \beta, h} \longrightarrow \nu_{\beta, h}$ weakly and in sense of moments.
Will use $\langle\cdots\rangle_{\beta, h}$ for expectations with $\nu_{\beta, h}$.

For a large class of models one can show existence of infinite volume limit, i.e., probability measure $\nu_{\beta, h}$ on $\mathbb{R}^{\mathbb{L}}$ such that for all sequences $\Lambda_{n} \nearrow \mathbb{L}, \nu_{\Lambda_{n}, \beta, h} \longrightarrow \nu_{\beta, h}$ weakly and in sense of moments.
Will use $\langle\cdots\rangle_{\beta, h}$ for expectations with $\nu_{\beta, h}$.
Define

$$
\chi(\beta)=\left\|\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{\beta, 0}\right\|_{\infty, 1}=\sup _{\mathbf{x}} \sum_{\mathbf{y}}\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{\beta, 0} \in[0, \infty] .
$$

For a large class of models one can show existence of infinite volume limit, i.e., probability measure $\nu_{\beta, h}$ on $\mathbb{R}^{\mathbb{L}}$ such that for all sequences $\Lambda_{n} \nearrow \mathbb{L}, \nu_{\Lambda_{n}, \beta, h} \longrightarrow \nu_{\beta, h}$ weakly and in sense of moments.
Will use $\langle\cdots\rangle_{\beta, h}$ for expectations with $\nu_{\beta, h}$.
Define

$$
\chi(\beta)=\left\|\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{\beta, 0}\right\|_{\infty, 1}=\sup _{\mathbf{x}} \sum_{\mathbf{y}}\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{\beta, 0} \in[0, \infty] .
$$

\exists phase transition iff $\exists \beta_{1}, \beta_{2} \in(0, \infty)$ such that $\chi\left(\beta_{1}\right)<\infty$ and $\chi\left(\beta_{2}\right)=\infty$.

For a large class of models one can show existence of infinite volume limit, i.e., probability measure $\nu_{\beta, h}$ on $\mathbb{R}^{\mathbb{L}}$ such that for all sequences $\Lambda_{n} \nearrow \mathbb{L}, \nu_{\Lambda_{n}, \beta, h} \longrightarrow \nu_{\beta, h}$ weakly and in sense of moments.
Will use $\langle\cdots\rangle_{\beta, h}$ for expectations with $\nu_{\beta, h}$.
Define

$$
\chi(\beta)=\left\|\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{\beta, 0}\right\|_{\infty, 1}=\sup _{\mathbf{x}} \sum_{\mathbf{y}}\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{\beta, 0} \in[0, \infty] .
$$

\exists phase transition iff $\exists \beta_{1}, \beta_{2} \in(0, \infty)$ such that $\chi\left(\beta_{1}\right)<\infty$ and $\chi\left(\beta_{2}\right)=\infty$. If so, let

$$
\beta_{c}=\sup \{\beta \mid \chi(\beta)<\infty\}=\inf \{\beta \mid \chi(\beta)=\infty\}
$$

Then $\nu_{c}:=\nu_{\beta_{c}, 0}$ is the critical theory.

Examples:

Examples:

1) The short-range Euclidean Ising model in dimension $d \geq 2$. $\rho=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) . \mathbb{L}=\mathbb{Z}^{d}$ with $d(\mathbf{x}, \mathbf{y})=$ Euclidean distance. $J_{\mathrm{xy}}=\mathbb{1}\{d(\mathbf{x}, \mathbf{y})=1\}$.

Examples:

1) The short-range Euclidean Ising model in dimension $d \geq 2$. $\rho=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) . \mathbb{L}=\mathbb{Z}^{d}$ with $d(\mathbf{x}, \mathbf{y})=$ Euclidean distance. $J_{\mathrm{x}}=\mathbb{1}\{d(\mathbf{x}, \mathbf{y})=1\}$.
2) The short-range Euclidean lattice ϕ^{4} model. The same with $\rho=\rho_{a, b} \in \bar{Q}_{D W}, a>0, b<0$.

Examples:

1) The short-range Euclidean Ising model in dimension $d \geq 2$.
$\rho=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) . \mathbb{L}=\mathbb{Z}^{d}$ with $d(\mathbf{x}, \mathbf{y})=$ Euclidean distance.
$J_{\mathrm{x}}=\mathbb{1}\{d(\mathbf{x}, \mathbf{y})=1\}$.
2) The short-range Euclidean lattice ϕ^{4} model. The same with $\rho=\rho_{a, b} \in \bar{Q}_{D W}, a>0, b<0$.
3) The long-range Euclidean models. $\rho \in \bar{Q}_{D W}, \mathbb{L}=\mathbb{Z}^{d}$,

$$
J_{x y} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{d+\sigma}}
$$

where $\sigma>0$ and \approx means the ratio is uniformly bounded away from 0 and ∞. Corresponds to fractional Laplacian $(-\Delta)^{\frac{\sigma}{2}}$ instead of $-\Delta$.

Examples:

1) The short-range Euclidean Ising model in dimension $d \geq 2$.
$\rho=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) . \mathbb{L}=\mathbb{Z}^{d}$ with $d(\mathbf{x}, \mathbf{y})=$ Euclidean distance.
$J_{\mathrm{x}}=\mathbb{1}\{d(\mathbf{x}, \mathbf{y})=1\}$.
2) The short-range Euclidean lattice ϕ^{4} model. The same with $\rho=\rho_{a, b} \in \bar{Q}_{D W}, a>0, b<0$.
3) The long-range Euclidean models. $\rho \in \bar{Q}_{D W}, \mathbb{L}=\mathbb{Z}^{d}$,

$$
J_{\mathrm{xy}} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{d+\sigma}}
$$

where $\sigma>0$ and \approx means the ratio is uniformly bounded away from 0 and ∞. Corresponds to fractional Laplacian $(-\Delta)^{\frac{\sigma}{2}}$ instead of $-\Delta . \sigma>0 \longrightarrow \exists$ infinite volume limit.

Examples:

1) The short-range Euclidean Ising model in dimension $d \geq 2$.
$\rho=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) . \mathbb{L}=\mathbb{Z}^{d}$ with $d(\mathbf{x}, \mathbf{y})=$ Euclidean distance.
$J_{\mathrm{x}}=\mathbb{1}\{d(\mathbf{x}, \mathbf{y})=1\}$.
2) The short-range Euclidean lattice ϕ^{4} model. The same with $\rho=\rho_{a, b} \in \bar{Q}_{D W}, a>0, b<0$.
3) The long-range Euclidean models. $\rho \in \bar{Q}_{D W}, \mathbb{L}=\mathbb{Z}^{d}$,

$$
J_{x y} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{d+\sigma}}
$$

where $\sigma>0$ and \approx means the ratio is uniformly bounded away from 0 and ∞. Corresponds to fractional Laplacian $(-\Delta)^{\frac{\sigma}{2}}$ instead of $-\Delta . \sigma>0 \longrightarrow \exists$ infinite volume limit. $d \geq 2$ or $(d=1$ and $\sigma \leq 1) \longrightarrow \exists$ phase transition.

Examples:

1) The short-range Euclidean Ising model in dimension $d \geq 2$.
$\rho=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) . \mathbb{L}=\mathbb{Z}^{d}$ with $d(\mathbf{x}, \mathbf{y})=$ Euclidean distance.
$J_{\mathrm{x}}=\mathbb{1}\{d(\mathbf{x}, \mathbf{y})=1\}$.
2) The short-range Euclidean lattice ϕ^{4} model. The same with $\rho=\rho_{a, b} \in \bar{Q}_{D W}, a>0, b<0$.
3) The long-range Euclidean models. $\rho \in \bar{Q}_{D W}, \mathbb{L}=\mathbb{Z}^{d}$,

$$
J_{x y} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{d+\sigma}}
$$

where $\sigma>0$ and \approx means the ratio is uniformly bounded away from 0 and ∞. Corresponds to fractional Laplacian $(-\Delta)^{\frac{\sigma}{2}}$ instead of $-\Delta . \sigma>0 \longrightarrow \exists$ infinite volume limit. $d \geq 2$ or $(d=1$ and $\sigma \leq 1) \longrightarrow \exists$ phase transition.
4) Hierarchical models. $d(\mathbf{x}, \mathbf{y})$ hierarchical distance on \mathbb{L} and for some constant $K>0$,

$$
J_{x y}=K \frac{1}{d(\mathbf{x}, \mathbf{y})^{d+\sigma}} .
$$

The hierarchical continuum:

The hierarchical continuum:

Let p be an integer >1 (in fact a prime number).

The hierarchical continuum:

Let p be an integer >1 (in fact a prime number).
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ with $a_{1}, \ldots, a_{d} \in \mathbb{N}_{0}$. The cubes of \mathbb{L}_{k} form a partition of the octant $[0, \infty)^{d}$.

The hierarchical continuum:

Let p be an integer >1 (in fact a prime number).
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ with $a_{1}, \ldots, a_{d} \in \mathbb{N}_{0}$. The cubes of \mathbb{L}_{k} form a partition of the octant $[0, \infty)^{d}$.

Hence $\mathbb{T}=\cup_{k \in \mathbb{Z}} \mathbb{L}_{k}$ naturally has the structure of a doubly infinite tree which is organized into layers or generations \mathbb{L}_{k} :

Picture for $d=1, p=2$

Forget $[0, \infty)^{d}$ and \mathbb{R}^{d} and just keep the tree.
Define the substitute for the continuum $\mathbb{Q}_{p}^{d}:=$ leafs at infinity " $\mathbb{L}_{-\infty}$ ".

Forget $[0, \infty)^{d}$ and \mathbb{R}^{d} and just keep the tree.
Define the substitute for the continuum $\mathbb{Q}_{p}^{d}:=$ leafs at infinity " $\mathbb{L}_{-\infty}$ ".
More precisely, these are the infinite bottom-up paths in the tree.

A path representing an element $x \in \mathbb{Q}_{p}^{d}$

A point $x \in \mathbb{Q}_{p}^{d}$ is encoded by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$,
$a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ be the sequence with all digits equal to zero.

A point $x \in \mathbb{Q}_{p}^{d}$ is encoded by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$, $a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ be the sequence with all digits equal to zero.
Caution! dangerous notation
a_{n} represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n}.

A point $x \in \mathbb{Q}_{p}^{d}$ is encoded by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$,
$a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ be the sequence with all digits equal to zero.
Caution! dangerous notation
a_{n} represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n}.

Moreover, rescaling is defined as follows.
If $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x:=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Moreover, rescaling is defined as follows.
If $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x:=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Likewise $p^{-1} x$ is downward shift, and so on for the definition of $p^{k} x, k \in \mathbb{Z}$.

Distance:

Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|_{p}:=p^{k}$ where k is the depth where the two paths merge.

Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|_{p}:=p^{k}$ where k is the depth where the two paths merge.

Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|_{p}:=p^{k}$ where k is the depth where the two paths merge.

Also let $|x|_{p}:=|x-0|_{p}$.

Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|_{p}:=p^{k}$ where k is the depth where the two paths merge.

Also let $|x|_{p}:=|x-0|_{p}$. Because of the dangerous notation

$$
|p x|_{p}=p^{-1}|x|_{p}
$$

Closed balls Δ of radius p^{k} correspond to the nodes $\mathbf{x} \in \mathbb{L}_{k}$

Closed balls Δ of radius p^{k} correspond to the nodes $\mathbf{x} \in \mathbb{L}_{k}$

Lebesgue measure:

Lebesgue measure:

Metric space $\mathbb{Q}_{p}^{d} \rightarrow$ Borel σ-algebra \rightarrow Lebesgue measure $d^{d} x$ which gives a volume $p^{d k}$ to closed balls of radius p^{k}.

Lebesgue measure:

Metric space $\mathbb{Q}_{p}^{d} \rightarrow$ Borel σ-algebra \rightarrow Lebesgue measure $d^{d} x$ which gives a volume $p^{d k}$ to closed balls of radius p^{k}.

Construction: take product of uniform probability measures on $\left(\{0,1, \ldots, p-1\}^{d}\right)^{\mathbb{N}_{0}}$ for $\bar{B}(0,1)$. Do the same for the other closed unit balls, and collate.

Lebesgue measure:

Metric space $\mathbb{Q}_{p}^{d} \rightarrow$ Borel σ-algebra \rightarrow Lebesgue measure $d^{d} x$ which gives a volume $p^{d k}$ to closed balls of radius p^{k}.

Construction: take product of uniform probability measures on $\left(\{0,1, \ldots, p-1\}^{d}\right)^{\mathbb{N}_{0}}$ for $\bar{B}(0,1)$. Do the same for the other closed unit balls, and collate.

The hierarchical lattice:

Truncate the tree at level zero and take $\mathbb{L}:=\mathbb{L}_{0}$. Using the identification of nodes with balls, define the hierarchical distance as

$$
d(\mathbf{x}, \mathbf{y})=\inf \left\{|x-y|_{p} \mid x \in \mathbf{x}, y \in \mathbf{y}\right\}
$$

Scaling limits:

Scaling limits:

In the Euclidean case, $\mathbb{L}=\mathbb{Z}^{d}$ and $\left(\phi_{\mathbf{x}}\right)_{\mathrm{x} \in \mathbb{Z}^{d}}$ sampled with ν_{c}. Let $L>1$ be an integer and $[\phi]$ a suitable number (the scaling dimension). For $r \in \mathbb{Z}$ define the random Schwartz distribution Φ_{r} in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)\left(\right.$ or $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$) given by

$$
\Phi_{r}=L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^{d}} \phi_{\mathbf{x}} \delta_{L^{\prime} \mathbf{x}} .
$$

Here $\delta_{L^{r} \times}(y)=\delta^{d}\left(y-L^{r} \mathbf{x}\right)$ translated Dirac delta on \mathbb{R}^{d}.

Scaling limits:

In the Euclidean case, $\mathbb{L}=\mathbb{Z}^{d}$ and $\left(\phi_{\mathrm{x}}\right)_{\mathrm{x} \in \mathbb{Z}^{d}}$ sampled with ν_{c}. Let $L>1$ be an integer and $[\phi]$ a suitable number (the scaling dimension). For $r \in \mathbb{Z}$ define the random Schwartz distribution Φ_{r} in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)\left(\right.$ or $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$) given by

$$
\Phi_{r}=L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^{d}} \phi_{\mathbf{x}} \delta_{L^{\prime} \mathbf{x}} .
$$

Here $\delta_{L^{\prime} x}(y)=\delta^{d}\left(y-L^{r} \mathbf{x}\right)$ translated Dirac delta on \mathbb{R}^{d}. The scaling limit is the limit in (probability) distribution of Φ_{r} when $r \rightarrow-\infty$. It is a Borel probability measure on $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$.

For another suitable number [ϕ^{2}] one can also consider the random distribution

$$
\Phi_{r}^{2}=L^{r\left(d-\left[\phi^{2}\right]\right)} \sum_{\mathbf{x} \in \mathbb{Z}^{d}}\left(\phi_{\mathbf{x}}^{2}-\left\langle\phi_{\mathbf{x}}^{2}\right\rangle_{c}\right) \delta_{L^{r} \mathbf{x}}
$$

For Ising replace ϕ_{x}^{2} by $\phi_{\mathbf{x}} \phi_{\mathbf{x}+\mathrm{e}}$ with \mathbf{e} canonical basis vector.

For another suitable number [ϕ^{2}] one can also consider the random distribution

$$
\Phi_{r}^{2}=L^{r\left(d-\left[\phi^{2}\right]\right)} \sum_{\mathbf{x} \in \mathbb{Z}^{d}}\left(\phi_{\mathbf{x}}^{2}-\left\langle\phi_{\mathbf{x}}^{2}\right\rangle_{c}\right) \delta_{L^{\prime} \mathbf{x}} .
$$

For Ising replace $\phi_{\mathbf{x}}^{2}$ by $\phi_{\mathbf{x}} \phi_{\mathbf{x}+\mathrm{e}}$ with \mathbf{e} canonical basis vector. If it exists, the limit in joint distribution $\left(\Phi_{r}, \Phi_{r}^{2}\right) \rightarrow\left(\Phi, \Phi^{2}\right)$ is a probability measure on $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right) \times \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$.

For another suitable number [ϕ^{2}] one can also consider the random distribution

$$
\Phi_{r}^{2}=L^{r\left(d-\left[\phi^{2}\right]\right)} \sum_{\mathbf{x} \in \mathbb{Z}^{d}}\left(\phi_{\mathbf{x}}^{2}-\left\langle\phi_{\mathbf{x}}^{2}\right\rangle_{c}\right) \delta_{L^{\prime} \mathbf{x}} .
$$

For Ising replace $\phi_{\mathbf{x}}^{2}$ by $\phi_{\mathbf{x}} \phi_{\mathbf{x}+\mathrm{e}}$ with \mathbf{e} canonical basis vector. If it exists, the limit in joint distribution $\left(\Phi_{r}, \Phi_{r}^{2}\right) \rightarrow\left(\Phi, \Phi^{2}\right)$ is a probability measure on $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right) \times \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Is Φ^{2} a local deterministic function of Φ ?
[ϕ] is the scaling dimension of the spin field. $\left[\phi^{2}\right]$ is the scaling dimension of the energy field. Can be read from long distance asymptotics

$$
\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text { and }\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2\left[\phi^{2}\right]}}
$$

with statistical mechanics notation $\langle\cdots\rangle^{\top}$ for joint cumulants.
[ϕ] is the scaling dimension of the spin field. $\left[\phi^{2}\right]$ is the scaling dimension of the energy field. Can be read from long distance asymptotics

$$
\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text { and }\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2\left[\phi^{2}\right]}}
$$

with statistical mechanics notation $\langle\cdots\rangle^{T}$ for joint cumulants. Let $[\phi]_{\text {Gauss }}=\frac{d-2}{2}$ in SR case and $[\phi]_{\text {Gauss }}=\frac{d-\sigma}{2}$ in LR case.
[ϕ] is the scaling dimension of the spin field. $\left[\phi^{2}\right]$ is the scaling dimension of the energy field. Can be read from long distance asymptotics

$$
\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text { and }\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2\left[\phi^{2}\right]}}
$$

with statistical mechanics notation $\langle\cdots\rangle^{T}$ for joint cumulants. Let $[\phi]_{\text {Gauss }}=\frac{d-2}{2}$ in SR case and $[\phi]_{\text {Gauss }}=\frac{d-\sigma}{2}$ in LR case. Anomalous dimension for $\Phi \Longleftrightarrow[\phi]>[\phi]_{\text {Gauss }}$.
[ϕ] is the scaling dimension of the spin field. $\left[\phi^{2}\right]$ is the scaling dimension of the energy field. Can be read from long distance asymptotics

$$
\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text { and }\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2\left[\phi^{2}\right]}}
$$

with statistical mechanics notation $\langle\cdots\rangle^{\top}$ for joint cumulants. Let $[\phi]_{\text {Gauss }}=\frac{d-2}{2}$ in SR case and $[\phi]_{\text {Gauss }}=\frac{d-\sigma}{2}$ in LR case. Anomalous dimension for $\Phi \Longleftrightarrow[\phi]>[\phi]_{\text {Gauss }}$. Anomalous dimension for $\phi^{2} \Longleftrightarrow\left[\phi^{2}\right]>2[\phi]$.
(1) Generalities about Ising and phi-four ferromagnets
(2) Results and conjectures
(3) A new method: space-dependent renormalization group

Euclidean 2D SR Ising: Scaling limit Φ with $[\phi]=\frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015).

Euclidean 2D SR Ising: Scaling limit Φ with $[\phi]=\frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). Scaling limit for Φ^{2} problematic because $\left[\phi^{2}\right]=1=\frac{d}{2}$.

Euclidean 2D SR Ising: Scaling limit Φ with $[\phi]=\frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). Scaling limit for ϕ^{2} problematic because $\left[\phi^{2}\right]=1=\frac{d}{2}$. Euclidean 2D SR phi-four: open.

Euclidean 2D SR Ising: Scaling limit Φ with $[\phi]=\frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). Scaling limit for ϕ^{2} problematic because $\left[\phi^{2}\right]=1=\frac{d}{2}$. Euclidean 2D SR phi-four: open.
Euclidean 3D SR Ising and phi-four: The conjecture is that the joint scaling limit $\left(\Phi, \Phi^{2}\right)$ exists and is a CFT with

$$
\begin{aligned}
& {[\phi]=0.5181489 \ldots} \\
& {\left[\phi^{2}\right]=1.412625 \ldots}
\end{aligned}
$$

Best current estimates by Kos, Poland, Simmons-Duffin and Vichi (JHEP 2016).

Euclidean 2D SR Ising: Scaling limit Φ with $[\phi]=\frac{1}{8}$ constructed and shown to be a conformal field theory. Dubedat (arXiv 2011), Chelkak, Hongler and Izyurov (AM 2015), Camia, Garban and Newman (AP 2015). Scaling limit for ϕ^{2} problematic because $\left[\phi^{2}\right]=1=\frac{d}{2}$. Euclidean 2D SR phi-four: open.
Euclidean 3D SR Ising and phi-four: The conjecture is that the joint scaling limit $\left(\Phi, \Phi^{2}\right)$ exists and is a CFT with

$$
\begin{aligned}
& {[\phi]=0.5181489 \ldots} \\
& {\left[\phi^{2}\right]=1.412625 \ldots}
\end{aligned}
$$

Best current estimates by Kos, Poland, Simmons-Duffin and Vichi (JHEP 2016). Note that

$$
\left[\phi^{2}\right]-2[\phi]=0.376327 \ldots
$$

Euclidean 3D LR phi-four: $d=3, \sigma=\frac{3+\epsilon}{2}$, with
$0<\epsilon \ll 1$, i.e., same regime as in Wilson's epsilon expansion (slightly below upper critical dimension).

Euclidean 3D LR phi-four: $d=3, \sigma=\frac{3+\epsilon}{2}$, with $0<\epsilon \ll 1$, i.e., same regime as in Wilson's epsilon expansion (slightly below upper critical dimension).
Lohmann, Slade and Wallace (arXiv 2017) proved that

$$
\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

with $[\phi]=[\phi]_{\text {Gauss }}=\frac{3-\epsilon}{4}$.

Euclidean 3D LR phi-four: $d=3, \sigma=\frac{3+\epsilon}{2}$, with $0<\epsilon \ll 1$, i.e., same regime as in Wilson's epsilon expansion (slightly below upper critical dimension).
Lohmann, Slade and Wallace (arXiv 2017) proved that

$$
\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

with $[\phi]=[\phi]_{\text {Gauss }}=\frac{3-\epsilon}{4}$.
Hierarchical 3D phi-four: A.A., Chandra and Guadagni (arXiv 2013) showed that also with $d=3, \sigma=\frac{3+\epsilon}{2}$

$$
\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle_{c} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}} \text { and }\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle_{c}^{T} \approx \frac{1}{d(\mathbf{x}, \mathbf{y})^{2\left[\phi^{2}\right]}}
$$

where $[\phi]=[\phi]_{\text {Gauss }}=\frac{3-\epsilon}{4}$ (this part was already done by Gawędzki and Kupiainen JSP 1984) and $\left[\phi^{2}\right]>2[\phi]$.

More precisely, we showed

$$
\left[\phi^{2}\right]-2[\phi]=\frac{\epsilon}{3}+o(\epsilon)
$$

as predicted by Wilson (PRD 1972).

More precisely, we showed

$$
\left[\phi^{2}\right]-2[\phi]=\frac{\epsilon}{3}+o(\epsilon)
$$

as predicted by Wilson (PRD 1972).
Bold extrapolation to 3D Ising $(\epsilon=1)$ gives $\left[\phi^{2}\right]-2[\phi] \simeq 0.333 \ldots$

More precisely, we showed

$$
\left[\phi^{2}\right]-2[\phi]=\frac{\epsilon}{3}+o(\epsilon)
$$

as predicted by Wilson (PRD 1972).
Bold extrapolation to 3D Ising $(\epsilon=1)$ gives
$\left[\phi^{2}\right]-2[\phi] \simeq 0.333 \ldots$
We also constructed joint scaling limit $\left(\Phi, \Phi^{2}\right)$ in
$\mathcal{S}^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times \mathcal{S}^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ and in particular controlled all mixed moments and not just 2-point function.

More precisely, we showed

$$
\left[\phi^{2}\right]-2[\phi]=\frac{\epsilon}{3}+o(\epsilon)
$$

as predicted by Wilson (PRD 1972).
Bold extrapolation to 3D Ising $(\epsilon=1)$ gives
$\left[\phi^{2}\right]-2[\phi] \simeq 0.333 \ldots$
We also constructed joint scaling limit $\left(\Phi, \Phi^{2}\right)$ in
$\mathcal{S}^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times \mathcal{S}^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ and in particular controlled all mixed moments and not just 2-point function.
A.A. (arXiv 2016) showed that Operator Product Expansion together with condition $[\phi],\left[\phi^{2}\right]<\frac{d}{2}$ implies that Φ^{2} is local deterministic function of Φ.

More precisely, we showed

$$
\left[\phi^{2}\right]-2[\phi]=\frac{\epsilon}{3}+o(\epsilon)
$$

as predicted by Wilson (PRD 1972).
Bold extrapolation to 3D Ising $(\epsilon=1)$ gives
$\left[\phi^{2}\right]-2[\phi] \simeq 0.333 \ldots$
We also constructed joint scaling limit $\left(\Phi, \Phi^{2}\right)$ in
$\mathcal{S}^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times \mathcal{S}^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ and in particular controlled all mixed moments and not just 2-point function.
A.A. (arXiv 2016) showed that Operator Product Expansion together with condition $[\phi],\left[\phi^{2}\right]<\frac{d}{2}$ implies that Φ^{2} is local deterministic function of Φ.
A.A. in progress: derivation of OPE $\Phi \times \Phi=\mathbb{1}+\Phi^{2}+\cdots$ (fusion rule notation).
(1) Generalities about Ising and phi-four ferromagnets
(2) Results and conjectures
(3) A new method: space-dependent renormalization group

Switching gears to the QFT point of view:

Switching gears to the QFT point of view:

To every set G of offsprings of a node $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $\left(\zeta_{x}\right)_{x \in G}$ with $p^{d} \times p^{d}$ covariance matrix made of $1-p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different litters are independent.

Switching gears to the QFT point of view:

To every set G of offsprings of a node $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $\left(\zeta_{x}\right)_{x \in G}$ with $p^{d} \times p^{d}$ covariance matrix made of $1-p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different litters are independent. We have $\sum_{x \in G} \zeta_{x}=0$ a.s.

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let anc $k_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.
Ditto for $\operatorname{anc}_{k^{\prime}}(x)$ when $x \in \mathbb{Q}_{p}^{d}$.

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let anc ${ }_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.
Ditto for $\operatorname{anc}_{k^{\prime}}(x)$ when $x \in \mathbb{Q}_{p}^{d}$.
The massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ of scaling dimention $[\phi]$ is given by

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|_{p}^{2[\phi]}}
\end{aligned}
$$

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let anc $k_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.
Ditto for $\operatorname{anc}_{k^{\prime}}(x)$ when $x \in \mathbb{Q}_{p}^{d}$.
The massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ of scaling dimention $[\phi]$ is given by

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|_{p}^{2[\phi]}}
\end{aligned}
$$

This is heuristic since ϕ is not well-defined in a pointwise manner. We need random Schwartz(-Bruhat) distributions.

Test functions:

Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant.

Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant. Define $S\left(\mathbb{Q}_{p}^{d}\right)$ as the space of compactly supported smooth functions.

Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant.
Define $S\left(\mathbb{Q}_{p}^{d}\right)$ as the space of compactly supported smooth functions.

We have

$$
S\left(\mathbb{Q}_{p}^{d}\right)=\cup_{n \in \mathbb{N}} S_{-n, n}\left(\mathbb{Q}_{p}^{d}\right)
$$

where for all $t_{-} \leq t_{+}, S_{t_{-}, t_{+}}\left(\mathbb{Q}_{p}^{d}\right)$ denotes the space of functions which are constant in each of the closed balls of radius $p^{t_{-}}$and with support inside $\bar{B}\left(0, p^{t_{+}}\right)$.

Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant.
Define $S\left(\mathbb{Q}_{p}^{d}\right)$ as the space of compactly supported smooth functions.

We have

$$
S\left(\mathbb{Q}_{p}^{d}\right)=\cup_{n \in \mathbb{N}} S_{-n, n}\left(\mathbb{Q}_{p}^{d}\right)
$$

where for all $t_{-} \leq t_{+}, S_{t_{-}, t_{+}}\left(\mathbb{Q}_{p}^{d}\right)$ denotes the space of functions which are constant in each of the closed balls of radius $p^{t_{-}}$and with support inside $\bar{B}\left(0, p^{t_{+}}\right)$.

Topology generated by the set of all possible semi-norms.

Distributions:

Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology

Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology \rightarrow Polish space.

Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology \rightarrow Polish space.

$$
\text { Probability Theory on } S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \text { is super! }
$$

Recall that $d=3,[\phi]=\frac{3-\epsilon}{4}$. Now let

Recall that $d=3,[\phi]=\frac{3-\epsilon}{4}$. Now let $L=p^{\ell}$ zooming-out factor

Recall that $d=3,[\phi]=\frac{3-\epsilon}{4}$. Now let $L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$

Recall that $d=3,[\phi]=\frac{3-\epsilon}{4}$. Now let $L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z} \operatorname{IR}$ cut-off, $s \rightarrow \infty$

Recall that $d=3,[\phi]=\frac{3-\epsilon}{4}$. Now let $L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
The regularized Gaussian measure μC_{r} is the law of

$$
\phi_{r}(x)=\sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_{k}(x)}
$$

Recall that $d=3,[\phi]=\frac{3-\epsilon}{4}$. Now let $L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
The regularized Gaussian measure μC_{r} is the law of

$$
\phi_{r}(x)=\sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_{k}(x)}
$$

Sample fields are true functions that are locally constant on scale L^{r}. These measures are scaled copies of each other.

Recall that $d=3,[\phi]=\frac{3-\epsilon}{4}$. Now let $L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z} \operatorname{IR}$ cut-off, $s \rightarrow \infty$
The regularized Gaussian measure μC_{r} is the law of

$$
\phi_{r}(x)=\sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_{k}(x)}
$$

Sample fields are true functions that are locally constant on scale L^{r}. These measures are scaled copies of each other. If the law of $\phi(\cdot)$ is $\mu_{C_{0}}$, then that of $L^{-r[\phi]} \phi\left(L^{r} \cdot\right)$ is $\mu_{C_{r}}$.

Fix the parameters g, μ and let $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Fix the parameters g, μ and let $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right) \subset \mathbb{Q}_{p}^{3}$, IR (or volume) cut-off.

Fix the parameters g, μ and let $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right) \subset \mathbb{Q}_{p}^{3}$, IR (or volume) cut-off.
Let

$$
V_{r, s}(\phi)=\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}: c_{r}(x)+\mu_{r}: \phi^{2}: c_{r}(x)\right\} d^{3} x
$$

and define the probability measure

$$
d \nu_{r, s}(\phi)=\frac{1}{\mathcal{Z}_{r, s}} e^{-V_{r, s}(\phi)} d \mu_{c_{r}}(\phi)
$$

Let $\phi_{r, s}$ be the random distribution in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define the squared field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is a deterministic function(al) of $\phi_{r, s}$, with values in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$, given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=Z_{2}^{r} \int_{\mathbb{Q}_{p}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: c_{r}(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

for suitable parameters Z_{2}, Y_{0}, Y_{2}.

Let $\phi_{r, s}$ be the random distribution in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define the squared field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is a deterministic function(al) of $\phi_{r, s}$, with values in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$, given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=Z_{2}^{r} \int_{\mathbb{Q}_{r}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: c_{r}(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

for suitable parameters Z_{2}, Y_{0}, Y_{2}.
The main result concerns the limit law of the pair $\left(\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ when $r \rightarrow-\infty, s \rightarrow \infty$ (in any order).
For the precise statement we need the approximate fixed point value

$$
\bar{g}_{*}=\frac{p^{\epsilon}-1}{36 L^{\epsilon}\left(1-p^{-3}\right)}
$$

Theorems:

Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of $\left(\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converge weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:

Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converge weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.

Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converge weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.
(2) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0$ i.e., ϕ is non-Gaussian. Here, $\mathbf{1}_{\mathbb{Z}_{p}^{3}}$ denotes the indicator function of $\bar{B}(0,1)$.

Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converge weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.
(2) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0$ i.e., ϕ is non-Gaussian. Here, $\mathbf{1}_{\mathbb{Z}_{p}^{3}}$ denotes the indicator function of $\bar{B}(0,1)$.
(3) $\left\langle N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}=1$.

The mixed correlation functions satisfy, in the sense of distributions,

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

The mixed correlation functions satisfy, in the sense of distributions,

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

The law $\nu_{\phi \times \phi^{2}}$ of $\left(\phi, N\left[\phi^{2}\right]\right)$ is independent of g : universality.

Theorem 2: A.A.-Chandra-Guadagni 2013
$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ are independent of the arbitrary factor L.

Theorem 2: A.A.-Chandra-Guadagni 2013

$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|_{\rho}^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{|x-y|_{p}^{2\left[\phi^{2}\right]}}
\end{gathered}
$$

Theorem 2: A.A.-Chandra-Guadagni 2013

$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|_{p}^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{|x-y|_{p}^{2\left[\phi^{2}\right]}}
\end{gathered}
$$

Note that $2\left[\phi^{2}\right]=3-\frac{1}{3} \epsilon+o(\epsilon) \rightarrow$ still $L^{1, \text { loc }}$!

Relation to previous statistical mechanics point of view:

Relation to previous statistical mechanics point of view: $\Lambda_{s}=\bar{B}\left(0, L^{s}\right) \subset \mathbb{Q}_{p}^{3}$ can also be seen as subset of $\mathbb{L}=\mathbb{L}_{0}$.

Relation to previous statistical mechanics point of view: $\Lambda_{s}=\bar{B}\left(0, L^{s}\right) \subset \mathbb{Q}_{p}^{3}$ can also be seen as subset of $\mathbb{L}=\mathbb{L}_{0}$. Unit cutoff covariance C_{0} can also be seen as lattice covariance $C_{0}=\left(C_{0, \mathrm{xy}}\right)_{\mathrm{x}, \mathrm{y} \in \mathbb{L}}$. More precisely

$$
C_{0, \mathrm{xy}}=\frac{1-p^{-(3-2[\phi])}}{1-p^{-2[\phi]}} \times \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

for $\mathbf{x} \neq \mathbf{y}$ and

$$
C_{0, \mathrm{xx}}=\frac{1-p^{-3}}{1-p^{-2[\phi]}} .
$$

Relation to previous statistical mechanics point of view: $\Lambda_{s}=\bar{B}\left(0, L^{s}\right) \subset \mathbb{Q}_{p}^{3}$ can also be seen as subset of $\mathbb{L}=\mathbb{L}_{0}$. Unit cutoff covariance C_{0} can also be seen as lattice covariance $C_{0}=\left(C_{0, \mathrm{xy}}\right)_{\mathrm{x}, \mathrm{y} \in \mathbb{L}}$. More precisely

$$
C_{0, \mathrm{xy}}=\frac{1-p^{-(3-2[\phi])}}{1-p^{-2[\phi]}} \times \frac{1}{d(\mathbf{x}, \mathbf{y})^{2[\phi]}}
$$

for $\mathbf{x} \neq \mathbf{y}$ and

$$
C_{0, \mathrm{xx}}=\frac{1-p^{-3}}{1-p^{-2[\phi]}} .
$$

Define the new matrix $A=\left(A_{x y}\right)_{x y \in \mathbb{L}}$ by

$$
A_{x y}=\lim _{s \rightarrow \infty}\left(\left.C_{0}\right|_{\Lambda_{s}}\right)_{x y}^{-1} .
$$

Then

$$
A_{\mathrm{xy}}=-\frac{p^{3-2[\phi]}-1}{1-p^{-(6-2[\phi])}} \times \frac{1}{d(\mathbf{x}, \mathbf{y})^{3+\sigma}}
$$

for $\mathbf{x} \neq \mathbf{y}$ and

$$
A_{\mathrm{xx}}=\frac{1-p^{-3}}{1-p^{-2[\phi]}}
$$

Here again $\sigma=3-2[\phi]=\frac{3+\epsilon}{2}$.

Then

$$
A_{\mathrm{xy}}=-\frac{p^{3-2[\phi]}-1}{1-p^{-(6-2[\phi])}} \times \frac{1}{d(\mathbf{x}, \mathbf{y})^{3+\sigma}}
$$

for $\mathbf{x} \neq \mathbf{y}$ and

$$
A_{\mathrm{xx}}=\frac{1-p^{-3}}{1-p^{-2[\phi]}}
$$

Here again $\sigma=3-2[\phi]=\frac{3+\epsilon}{2}$.
We proved that $\lim _{s \rightarrow \infty} \nu_{0, s}$ is the same infinite volume lattice measure as previous ν_{c} for suitable a, b, β_{c}, K related to $g, \mu(g)$.

The renormalization group idea in a nutshell:

The renormalization group idea in a nutshell:
Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but

The renormalization group idea in a nutshell:
Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

Example (Landen-Gauss): $\vec{V}=(a, b) \in \mathcal{E}=(0, \infty)^{2}$

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

Example (Landen-Gauss): $\vec{V}=(a, b) \in \mathcal{E}=(0, \infty)^{2}$

$$
\mathcal{Z}(\vec{V})=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}
$$

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

Example (Landen-Gauss): $\vec{V}=(a, b) \in \mathcal{E}=(0, \infty)^{2}$

$$
\mathcal{Z}(\vec{V})=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}
$$

Take $R G(a, b)=\left(\frac{a+b}{2}, \sqrt{a b}\right)$.

In usual rigorous RG couplings are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

In usual rigorous RG couplings are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

ACG 2013 \rightarrow inhomogeneous RG for space-dependent couplings.

$$
\int\left\{g(x): \phi^{4}:(x)+\mu(x): \phi^{2}:(x)\right\} d^{d} x
$$

e.g., $g(x)=g+\delta g(x)$, with $\delta g(x)$ a local perturbation such as test function.

In usual rigorous RG couplings are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

ACG $2013 \rightarrow$ inhomogeneous RG for space-dependent couplings.

$$
\int\left\{g(x): \phi^{4}:(x)+\mu(x): \phi^{2}:(x)\right\} d^{d} x
$$

e.g., $g(x)=g+\delta g(x)$, with $\delta g(x)$ a local perturbation such as test function.
Rigorous nonperturbative version of the local RG:
Wilson-Kogut PR 1974, Drummond-Shore PRD 1979, Jack-Osborn NPB 1990,...
used for generalizations of Zamolodchikov's c-"Theorem", study of scale versus conformal invariance, AdS/CFT,...

1st step: switch to unit lattice/cut-off

$$
\mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}} e^{i \phi(f)}=\log
$$

$$
\frac{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right)}
$$

1st step: switch to unit lattice/cut-off

$$
\mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}} e^{i \phi(f)}=\log
$$

$$
\frac{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right)}
$$

$$
=\log \frac{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[f](\phi)}{\int d \mu c_{0}(\phi) \mathcal{I}^{(r, r)}[0](\phi)}
$$

1st step: switch to unit lattice/cut-off

$$
\begin{aligned}
& \mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}} e^{i \phi(f)}=\log \\
& \frac{\int d \mu_{C_{r}}(\phi)}{} \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}: r\right\} d x+\int \phi(x) f(x) d x\right) \\
& \int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right) \\
&=\log \frac{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[f](\phi)}{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[0](\phi)}=: \log \frac{\mathcal{Z}\left(\vec{V}^{(r, r)}[f]\right)}{\mathcal{Z}(\vec{V}(r, r)[0])}
\end{aligned}
$$

1st step: switch to unit lattice/cut-off

$$
\begin{aligned}
& \mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}} e^{i \phi(f)}=\log \\
& \frac{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right)} \\
&=\log \frac{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[f](\phi)}{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[0](\phi)}=: \log \frac{\mathcal{Z}\left(\vec{V}^{(r, r)}[f]\right)}{\mathcal{Z}(\vec{V}(r, r)[0])}
\end{aligned}
$$

with

$$
\begin{aligned}
\mathcal{I}^{(r, r)}[f](\phi)= & \exp \left(-\int_{\Lambda_{s-r}}\left\{g: \phi^{4}:_{0}(x)+\mu: \phi^{2}: 0\right\} d^{3} x\right. \\
& \left.+L^{(3-[\phi]) r} \int \phi(x) f\left(L^{-r} x\right) d^{3} x\right)
\end{aligned}
$$

2nd step: define inhomogeneous RG
Fluctuation covariance $\Gamma:=C_{0}-C_{1}$.
Associated Gaussian measure is the law of the fluctuation field

$$
\zeta(x)=\sum_{0 \leq k<\ell} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

L-blocks (closed balls of radius L) are independent. Hence

2nd step: define inhomogeneous RG

Fluctuation covariance $\Gamma:=C_{0}-C_{1}$.
Associated Gaussian measure is the law of the fluctuation field

$$
\zeta(x)=\sum_{0 \leq k<\ell} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

L-blocks (closed balls of radius L) are independent. Hence

$$
\begin{gathered}
\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=\iint \mathcal{I}^{(r, r)}[f](\zeta+\psi) d \mu_{\Gamma}(\zeta) d \mu_{c_{1}}(\psi) \\
=\int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)
\end{gathered}
$$

with new integrand

$$
\mathcal{I}^{(r, r+1)}[f](\phi)=\int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)
$$

Need to extract vacuum renormalization \rightarrow better definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)$

Need to extract vacuum renormalization \rightarrow better definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)$
Repeat: $\mathcal{I}^{(r, r)} \rightarrow \mathcal{I}^{(r, r+1)} \rightarrow \mathcal{I}^{(r, r+2)} \rightarrow \cdots \rightarrow \mathcal{I}^{(r, s)}$

Need to extract vacuum renormalization \rightarrow better definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu c_{0}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu c_{0}(\phi)$
Repeat: $\mathcal{I}^{(r, r)} \rightarrow \mathcal{I}^{(r, r+1)} \rightarrow \mathcal{I}^{(r, r+2)} \rightarrow \cdots \rightarrow \mathcal{I}^{(r, s)}$
One must control

$$
\mathcal{S}^{\mathrm{T}}(f)=\lim _{\substack{r \rightarrow-\infty \\ s \rightarrow \infty}} \sum_{r \leq q<s}\left(\delta b\left(\mathcal{I}^{(r, q)}[f]\right)-\delta b\left(\mathcal{I}^{(r, q)}[0]\right)\right)
$$

limit of logarithms of characteristic functions.

Use a Brydges-Yau lift

Use a Brydges-Yau lift

$$
\begin{aligned}
& R G_{\text {inhom }} \\
& \vec{V}^{(r, q)} \quad \longrightarrow \quad \vec{V}^{(r, q+1)} \\
& \begin{array}{ccc}
\downarrow \\
\mathcal{I}^{(r, q)}
\end{array} \quad \longrightarrow \quad \begin{array}{c}
\downarrow \\
\mathcal{I}^{(r, q+1)}
\end{array} \\
& \mathcal{I}^{(r, q)}(\phi)=\prod_{\substack{\Delta \in \mathbb{L}_{0} \\
\Delta \subset \Lambda_{s-q}}}\left[e^{f_{\Delta} \phi_{\Delta}} \times\right. \\
& \left\{\exp \left(-\beta_{4, \Delta}: \phi_{\Delta}^{4}: c_{0}-\beta_{3, \Delta}: \phi_{\Delta}^{3}: c_{0}-\beta_{2, \Delta}: \phi_{\Delta}^{2}: c_{0}-\beta_{1, \Delta}: \phi_{\Delta}^{1}: c_{0}\right)\right. \\
& \times\left(1+W_{5, \Delta}: \phi_{\Delta}^{5}: c_{0}+W_{6, \Delta}: \phi_{\Delta}^{6}: c_{0}\right) \\
& \left.\left.+R_{\Delta}\left(\phi_{\Delta}\right)\right\}\right]
\end{aligned}
$$

Use a Brydges-Yau lift

$$
\begin{aligned}
& R G_{\text {inhom }} \\
& \vec{V}^{(r, q)} \quad \longrightarrow \quad \vec{V}^{(r, q+1)} \\
& \begin{array}{ccc}
\downarrow \\
\mathcal{I}^{(r, q)}
\end{array} \quad \longrightarrow \quad \begin{array}{c}
\downarrow \\
\mathcal{I}^{(r, q+1)}
\end{array} \\
& \mathcal{I}^{(r, q)}(\phi)=\prod_{\substack{\Delta \in \mathbb{L}_{0} \\
\Delta \subset \Lambda_{s-q}}}\left[e^{f_{\Delta} \phi_{\Delta}} \times\right. \\
& \left\{\exp \left(-\beta_{4, \Delta}: \phi_{\Delta}^{4}: c_{0}-\beta_{3, \Delta}: \phi_{\Delta}^{3}: c_{0}-\beta_{2, \Delta}: \phi_{\Delta}^{2}: c_{0}-\beta_{1, \Delta}: \phi_{\Delta}^{1}: c_{0}\right)\right. \\
& \times\left(1+W_{5, \Delta}: \phi_{\Delta}^{5}: c_{0}+W_{6, \Delta}: \phi_{\Delta}^{6}: c_{0}\right) \\
& \left.\left.+R_{\Delta}\left(\phi_{\Delta}\right)\right\}\right]
\end{aligned}
$$

Dynamical variable is $\vec{V}=\left(V_{\Delta}\right)_{\Delta \in \mathbb{L}_{0}}$ with

$$
V_{\Delta}=\left(\beta_{4, \Delta}, \beta_{3, \Delta}, \beta_{2, \Delta}, \beta_{1, \Delta}, W_{5, \Delta}, W_{6, \Delta}, f_{\Delta}, R_{\Delta}\right)
$$

$R G_{\text {inhom }}$ acts on $\mathcal{E}_{\text {inhom }}$, essentially,

$$
\prod_{\Delta \in \mathbb{L}_{0}}\left\{\mathbb{C}^{7} \times C^{9}(\mathbb{R}, \mathbb{C})\right\}
$$

$R G_{\text {inhom }}$ acts on $\mathcal{E}_{\text {inhom }}$, essentially,

$$
\prod_{\Delta \in \mathbb{L}_{0}}\left\{\mathbb{C}^{7} \times C^{9}(\mathbb{R}, \mathbb{C})\right\}
$$

Stable subspaces

$\mathcal{E}_{\text {hom }} \subset \mathcal{E}_{\text {inhom }}:$ spatially constant data.
$\mathcal{E} \subset \mathcal{E}_{\text {hom }}$: even potential, i.e., g, μ 's only and R even function.
Let $R G$ be induced action of $R G_{\text {inhom }}$ on \mathcal{E}.

3rd step: stabilize bulk (homogeneous) evolution Show that $\forall q \in \mathbb{Z}, \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]$ exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.

3rd step: stabilize bulk (homogeneous) evolution
Show that $\forall q \in \mathbb{Z}, \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]$ exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.

$$
R G\left\{\begin{array}{l}
g^{\prime}=L^{\epsilon} g-A_{1} g^{2}+\cdots \\
\mu^{\prime}=L^{\frac{3+\epsilon}{2}} \mu-A_{2} g^{2}-A_{3} g \mu+\cdots \\
R^{\prime}=\mathcal{L}^{(g, \mu)}(R)+\cdots
\end{array}\right.
$$

3rd step: stabilize bulk (homogeneous) evolution

Show that $\forall q \in \mathbb{Z}, \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]$ exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.

$$
R G\left\{\begin{array}{l}
g^{\prime}=L^{\epsilon} g-A_{1} g^{2}+\cdots \\
\mu^{\prime}= \\
L^{\frac{3+\epsilon}{2}} \mu
\end{array}=\mathcal{L}_{2} \boldsymbol{L}^{(g, \mu)}(R)+\cdots . A_{3} g \mu+\right.
$$

Tadpole graph with mass insertion

$$
A_{3}=12 L^{3-2[\phi]} \int_{\mathbb{Q}_{p}^{3}} \Gamma(0, x)^{2} d^{3} x
$$

is main culprit for anomalous scaling dimension $\left[\phi^{2}\right]-2[\phi]>0$.

Irwin's proof \rightarrow stable manifold $W^{\text {s }}$

Irwin's proof \rightarrow stable manifold W^{s}
Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*}.

Irwin's proof \rightarrow stable manifold W^{s}
Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*}.
Construct unstable manifold W^{u}, intersect with $W^{\text {s }}$, transverse at v_{*}.

Irwin's proof \rightarrow stable manifold $W^{\text {s }}$
Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*}.
Construct unstable manifold W^{u}, intersect with W^{s}, transverse at v_{*}.
Here, $\vec{V}^{(r, r)}[0]$ is independent of r : strict scaling limit of fixed model on unit lattice.
Must be chosen in $W^{s} \rightarrow \mu(g)$ critical mass.

Irwin's proof \rightarrow stable manifold W^{s}
Restriction to $W^{s} \rightarrow$ contraction $\rightarrow \mathrm{IR}$ fixed point v_{*}.
Construct unstable manifold W^{u}, intersect with W^{s}, transverse at v_{*}.
Here, $\vec{V}^{(r, r)}[0]$ is independent of r : strict scaling limit of fixed model on unit lattice.
Must be chosen in $W^{s} \rightarrow \mu(g)$ critical mass.
Thus

$$
\forall q \in \mathbb{Z}, \quad \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]=v_{*}
$$

Tangent spaces at fixed point: E^{s} and E^{u}.
$E^{u}=\mathbb{C} e_{u}$, with e_{u} eigenvector of $D_{v_{*}} R G$ for eigenvalue $\alpha_{u}=L^{3-2[\phi]} \times Z_{2}=: L^{3-\left[\phi^{2}\right]}$.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in r.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in r.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. \rightarrow deviation is 0 for $q<$ local constancy scale of test function f.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in r.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. \rightarrow deviation is 0 for $q<$ local constancy scale of test function f.
2) Deviation resides in closed unit ball containing origin for $q>$ radius of support of $f \rightarrow$ exponential decay for large q.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q,
$\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in r.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. \rightarrow deviation is 0 for $q<$ local constancy scale of test function f.
2) Deviation resides in closed unit ball containing origin for $q>$ radius of support of $f \rightarrow$ exponential decay for large q.
For source term with ϕ^{2} add

$$
Y_{2} Z_{2}^{r} \int: \phi^{2}: c_{r}(x) j(x) d^{3} x
$$

to potential. $\mathcal{S}_{r, s}^{\mathrm{T}}(f, j)$ now involves two test functions. After rescaling to unit lattice/cut-off

$$
Y_{2} \alpha_{u}^{r} \int: \phi^{2}: c_{0}(x) j\left(L^{-r} x\right) d^{3} x
$$

to be combined with μ into $\left(\beta_{2, \Delta}\right)_{\Delta \in \mathbb{L}_{0}}$ space-dependent mass.

5th step: partial linearization

5th step: partial linearization

In order to replay same sequence of moves with j present,

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).
For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi\left(v, \alpha_{\mathrm{u}} w\right)=R G(\Psi(v, w))$.

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{\mathrm{u}}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).
For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi\left(v, \alpha_{\mathrm{u}} w\right)=R G(\Psi(v, w))$.

If there were no W^{s} directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).
For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi\left(v, \alpha_{u} w\right)=R G(\Psi(v, w))$.

If there were no $W^{\text {s }}$ directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.
$\Psi(v, w)$ is holomorphic in v and w.
Essential for probabilistic interpretation of ($\phi, N\left[\phi^{2}\right]$) as pair of random variables in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$.

References:

A.A., A. Chandra, G. Guadagni, "Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions", arXiv 2013.
A.A., "QFT, RG, and all that, for mathematicians, in eleven pages", arXiv 2013.
A.A., "Towards three-dimensional conformal probability", arXiv 2015.
A.A., "A second-quantized Kolmogorov-Chentsov theorem", arXiv 2016.

References:

A.A., A. Chandra, G. Guadagni, "Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions", arXiv 2013.
A.A., "QFT, RG, and all that, for mathematicians, in eleven pages", arXiv 2013.
A.A., "Towards three-dimensional conformal probability", arXiv 2015.
A.A., "A second-quantized Kolmogorov-Chentsov theorem", arXiv 2016.

Thank you for your attention.

