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At the end of this scaling limit one obtains Brownian motion:
random function [0, +00) — RP, t — B(t).

This kind of limiting object has two important properties:
@ universality (many discrete models share this same limit)

@ more symmetries (e.g., 90 degree rotations — all
rotations)

Scale invariance: AY1B(\t) 4 B(t) for all A > 0. Here
[¢] = —1% is the dimension of the field. Related to the Hurst
(homogeneity) exponent by [¢] = —H. Equivalently,

B(\t) £ A2 B(t).

Global conformal invariance (P. Lévy 1940): For all t > 0,
F()|¥1B(f(t)) < B(t) where f denotes the inversion
f(t) = 1. Equivalently, tB(}) < B(t).

The dilation factor A becomes |f'(t)|, i.e., local or
space-dependent.
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A scaling limit is a particular case of limit theorem in
probability. For this one needs a fixed measurable space

(Q, F) on which one can study the weak convergence of
probability measures P, — P. Thus 2 must be a topological
space and F must be the corresponding Borel o-algebra.

Very general and canonical choice: Q = S'(RY) with strong
topology (one could also use weak-x).

Recall: Let ¢ : R? — R be continuous and of temperate
growth. Let L be an integer > 1 (zooming-out factor). Dyadic
techniques in harmonic analysis <» L = 2.

For all test function f € S(RY) We have

LY ciipa O(X)F(X) = [oa &(x)F(x) d?x when r — —oo.

Hence L™ Y" .70 &(x)0x — ¢ in S'(R?) (for weak-x).
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The random situation:

Let (0x)xeze be a random field on the lattice with values in
{1,—1} or R (provided a.s. temperate).

One obtains a random Schwartz distribution supported on the
fine lattice with mesh L™ by taking

LD S 55,

xezd

with suitable choice of the scaling dimension [¢] for weak
convergence of probability law.

Exercise:

Simple random walk — Brownian motion (d =1 and D = 1).
Let o, =0if x <0 and o, = ZO<y§x wy if x > 0, where the
steps w are independent equal to +1 with probability %
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¢ (F) = L'O7EDN "5 F(L7x)

XEZ
— (- [¢)Z(Z ) (L"x)
x>0 \0<y<x
— (=[] Zwy (Z f(er))
y>0 x>y

By the Dominated Convergence Theorem

(el (D)) .= | er(H)
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Taking r — —oo limit, we essentially get
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Hence

r——0o0

im (&) = exp (~3(0(7)0())
with

@A) = [ (00a)00e)Fl)Fe) dhac
where

min(xy, x2) if x1,x >0,

(¢(x1)o(x)) = { 0 otherwise.

Finally, use the Lévy Continuity Theorem on S’(R). QED



2D Ising Model:



2D Ising Model:

At the critical temperature, the Ising random field (oy)xcz2
with +1 values is such that the law of

¢, = LN N i 0xOurk, with d = 2 and [¢] = 1 converges
weakly, when r — —o0, to a conformally invariant
non-Gaussian probability measure on S'(R?).



2D Ising Model:

At the critical temperature, the Ising random field (oy)xez2
with +1 values is such that the law of

¢ = LD N 001, with d =2 and [¢] = & converges
weakly, when r — —o0, to a conformally invariant
non-Gaussian probability measure on S'(R?).

This is not an exercisel!!l



2D Ising Model:

At the critical temperature, the Ising random field (oy)xcz2
with +1 values is such that the law of

¢ = LD N 001, with d =2 and [¢] = & converges
weakly, when r — —o0, to a conformally invariant
non-Gaussian probability measure on S'(R?).

This is not an exercisel!!l

Result due to Camia-Garban-Newman (Ann. Probab. 2015)
and Chelkak-Hongler-lzyurov (Ann. Math. 2015).
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Studied by Brydges-Mitter-Scoppola CMP 2003 and A. A.
CMP 2007. It is a generalization of the ¢* model to fractional
powers of the Laplacien.

Analogy: The Navier-Stokes Equation
Ou+u-Vu=Au—-Vp
generalizes to
Owu+u-Vu=—(—A)"u—Vp

the hyperdissipative Navier-Stokes Equation.

For a > %, global regularity of solutions was proved by
Katz-Pavlovi¢ GAFA 2002.

For all exponant a < %, this is an open problem.
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We will focus on the particular case d = 3 and a = % with

O<ex 1.

Can be seen as continuous limit of spin models, like Ising, with
ferromagnetic long-range interactions.
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Let C .. be the continuous bilinear form on S(IR®) given by

1 F(O)8(E)
Clf-8) = 5oy /. e Ot

where [¢] = 37¢ is the scaling dimension of the field. Let

tic_.. be the centered Gaussian measure with covariance C_

Mollifier pyyv: C* function, R® — R, compact support,
O(3)-invariant, [ pyy = 1.

Volume cut-off pir: C* function, R® — R, compact support,
O(3)-invariant, positive, equal to 1 near origin.

Again, fix zooming-out ratio L > 1.
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For r € Z (UV cut-off r — —o0), let

puv.A(x) = L7 puy(L™"x).

For s € Z (IR cut-off s — 00), let pir s(x) = pr(L™*x).
Let 1ic, be the law of ¢ * pyy,, where ¢ € S'(R?) sampled
according to the law ¢ .

Given a choice of parameters (g, ji,),cz, one has well-defined
probability measures dv, s(¢) whose Radon-Nikodym
derivatives with respect to dyc,(¢) is

~o (= [ pmal g 0% 00+ 7 (0) )

with Hermite-Wick order with respect to sic,.

The scale invariant measure for (fractional) ¢* model should
be the weak limit v, = lim,_,_ . lims_, v/, s for a choice
(&, 14r)rez that emulates the scaling limit of a fixed critical
lattice random field (like for 2D Ising).
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Let [¢] = 3¢ with 0 < e < 1.

There exists a nonempty open interval /| C (0,00) and a
function p. : I — R such that for all g € [, if one lets
g = LG4 g and p, = LGNy (g), then the weak
I|m|t Vg exists, is non- Gaussmn stationary, O(3)-invariant, and

scale invariant with exponent [¢], i.e., Al¥lp(\.) « o(-) for all
A > 0.
Moreover, this limit is independent of L and g € / and of the

choice of pyv, pIr.

Measure constructed on T? torus by Mitter (~ 2004) using RG
fixed point obtained by Brydges-Mitter-Scoppola CMP 2003.
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A probability measure 1 on S’'(IR?) has moments of all orders
(MAO property) if for all f € S(R3?) and all p € [1, ), the
function ¢ — ¢(f) is in LP(S'(R3), p).

The n-linear forms given by the moments

Solfseono ) = (008) - 0(6)) = [ o(6) -~ o(A)au(o)

are automatically continuous (Fernique 1967).

A probability measure 1 is determined by correlations (DC) if
it is MAO and the only MAO measure with the same sequence
of moments S, is p itself.

By the Schwartz Kernel Theorem S, can be seen as an
element of S'(R3").
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@ Vn, S, € S'(R3") has singular support inside the big
diagonal Diag,, = {(x1,...,X,) € R¥|3i # j, x; = x;}.
This defines the pointwise correlations

So(x1, ... xn) = (d(x1) - - - d(xn)) as C> functions on
R3™\Diag,,.

@ The pointwise correlations are [1!°¢ on the big diagonal.
@ For all n and all test functions fi, ..., f, € S(R?),

(p(h) - o(f)) =
/R-’m\n (d(x1) -+ p(xn) ) F(x1) - - - F () X1 - - - .

Conjecture 2:
vy is DPC.
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4) Conformal invariance:

Conjecture 3:

The pointwise correlations of v, satisfy

[¢]

(p(x) - ¢(xa)) = (HIJf(x,-)I 3) X (@(f(xa)) - - o(F(xn)))

for all f € M(RR?) and all collection of distinct points in

R\{f~*(c0)}.

Here, M(R3) is the Mobius Group of global conformal maps
and J¢(x) is the Jacobian of f at x.

Conj. 3 is a precise formulation of predictions made in
“Conformal invariance in the long-range Ising model” by
Paulos, Rychkov, van Rees and Zan, Nucl. Phys. B 2016 — >
Higher dimensional conformal bootstrap program.
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5) The Mobius group from an AdS/CFT point of view:

Let R3 = R3 U {00} ~ S3. M(RR?) is the group of bijective
transformations of R3 generated by isometries, dilations and
the unit sphere inversion J(x) = |x|72x. This is also the
invariance group of the absolute cross-ratio

CR(X17X27X37X4) - |X1 - X3| |X2 - X4|

B |X1—X4| |X2—X3’ '

Conformal ball model: R3 ~ S3 seen as boundary of B* with

metric ds = 12_|C|/§||2-
Half-space model: R® seen as boundary of H* = R3 x (0, o0)

with metric ds = 1%
X4

Correpondence: f € M(R3) < hyperbolic isometry of the
interior B* or H*.



@ Introduction
@ The Euclidean CFT model: conjectures
@ The p-adic toy model: some theorems

@ The method: space-dependent
renormalization group

o F = = E 9DaAe
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1) The hierarchical continuum:
Let p be an integer > 1 (in fact a prime number).

Let Ly, k € Z, be the set of cubes [, [aip¥, (a; + 1)p¥) with
ai,...,aq € Ng. The cubes of IL, form a partition of the
octant [0, 00)9.

Hence T = UkezILi naturally has the structure of a doubly
infinite tree which is organized into layers or generations Lj:



Picture ford =1, p =2

=} 5 = £ DA



Forget [0,00)¢ and R¥ and just keep the tree.
Define the substitute for the continuum Qg = leafs at infinity
T_".



Forget [0,00)¢ and R¥ and just keep the tree.

Define the substitute for the continuum Qg := leafs at infinity
"T_s".

More precisely, these are the infinite bottom-up paths in the
tree.

A path representing an element x € @g
] = =
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Let 0 € Qg be the sequence with all digits equal to zero.
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A point x € QY is encoded by a sequence (a,) ez,
a,€{0,1,....,p—1}¢.
Let 0 € Qg be the sequence with all digits equal to zero.

Caution! dangerous notation

a, represents the local coordinates for a cube of IL_,,_; inside
a cube of L_,,.
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Moreover, rescaling is defined as follows.

If x = (an)nez then px := (a,-1)nez, i-e., upward shift.

0 x

\\/g \}
N\

Likewise p~1x is downward shift, and so on for the definition
of p¥x, k € Z.
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2) Distance:

If x,y € QF, define their distance as |x — y| := p* where k is
the depth where the two paths merge.

Also let |x| := |x — 0|. Because of the dangerous notation

x| = p~ x|
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3) Lebesgue measure:

Metric space Qg — Borel o-algebra — Lebesgue measure d9x
which gives a volume p? to closed balls of radius p*.

Construction: take product of uniform probability measures on
({0,1,...,p—1}9)% for B(0,1). Do the same for the other
closed unit balls, and collate.
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To every litter G of Mama Cat z € L, ,; associate a centered
Gaussian random vector ((y)xcc With p? x p? covariance
matrix made of 1 — p~9's on the diagonal and —p~9's
everywhere else. We impose that Gaussian vectors
corresponding to different layers or different litters are
independent.



4) The massless Gaussian measure:

To every litter G of Mama Cat z € L, ,; associate a centered
Gaussian random vector ((y)xcc With p? x p? covariance
matrix made of 1 — p~9's on the diagonal and —p~9's
everywhere else. We impose that Gaussian vectors
corresponding to different layers or different litters are
independent. We have - (c=0as.
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The ancestor function: for k < k/, x € Ly, let ancy(x) denote
the ancestor in L.
Ditto for anc, (x) when x € Q.
The massless Gaussian field ¢(x), x € QJ of scaling dimention
[¢] is given by

¢(X) = Z pik[d)]ganck(x)

(0(x)o(y)) =

This is heuristic since ¢ is not well-defined in a pointwise
manner. We need random Schwartz(-Bruhat) distributions.

Cc
x = y|#
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Define S(Qg) as the space of compactly supported smooth
functions.

We have
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5) Test functions:

f: Qg — R is smooth if it is locally constant.
Define S(Qg) as the space of compactly supported smooth
functions.

We have
S(Qg) - UnGNan,n(Qz)
where for all t_ < t,, S; ., (@g) denotes the space of

functions which are constant in each of the closed balls of
radius p*~ and with support inside B(0, p*).

Topology generated by the set of all possible semi-norms.
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6) Distributions:

5'(Qg) is the dual space with strong topology (happens to be
same as weak-x).
Thus

5'(Q)) ~ B

p

with product topology — Polish space.

Probability Theory on $'(Q%) is super!
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@ oe

Prokhorov's Theorem

Bochner's Theorem

Lévy's Continuity Theorem

Uniform convergence of characteristic functions in a
complex neighborhood of the origin implies weak
convergence of probability measures (use moments or the
Vitali-Porter Theorem).

The renormalization group (RG) techniques introduced by
A.A.-Chandra-Guadagni (arXiv 2013) especially suitable
for such convergence criterion.

5'(Qg) x S'(Qg) ~ S'(QF) the machinery also works for
join laws of pairs of random distributions, e.g., (¢, N[¢?])
in following slides.
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7) The p-adic CFT toy model:

d =3, [¢] = 3¢, L = p’ zooming-out factor

r € Z UV cut-off, r - —o0
s € Z IR cut-off, s — o0

The regularized Gaussian measure fic, is the law of

gb,(X) = Z p—k[¢]<=aan(X)

k=/Cr

Sample fields are true fonctions that are locally constant on
scale L".

These measures are scaled copies of each other.

If the law of ¢(-) is jic,, then that of L=l (L") is yuc,.
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Fix the parameters g, ;1 and let g, = L~ G~4?Drg and
= L6207,

Let As = B(0, L*), IR (or volume) cut-off.
Let

Vis(0) = A {g: 0" 1. () + 1 9% 1c, (x)}dx
and define the probability measure

1
dv,s(¢) = Z € Vi@ dpuc, (¢)

r,s



Let ¢, s be the random distribution in S'(Q?) sampled
according to v, s and define the squared field N,[¢? ] which is
a deterministic function(al) of ¢, s, with values in 5'(Q3),

given by
N(62.10) = Z / (Vs 620 () — Yol 21} j(x) dx

for suitable parameters 25, Yy, Yo.



Let ¢, s be the random distribution in S'(Q?) sampled
according to v, s and define the squared field N,[¢? ] which is
a deterministic function(al) of ¢, s, with values in 5'(Q3),
given by

NIGIO) = 2 [ (Yer o (= Yol ™11} ) ds

for suitable parameters 25, Yy, Yo.

The main result concerns the limit law of the pair

(¢r.s; Ne[#7]) in S'(Q2) x S'(Q}) when r — —o0, s — oo (in
any order).

For the precise statement we need the approximate fixed point

value
_ pc—1

& 7 36Le(1— p-3)
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Theorem 1: A.A.-Chandra-Guadagni 2013

dp > 0, ALy, VL > Ly, Jeg > 0, Ve € (0,¢], I[¢?]>2[4],
3 fonctions u(g), Yo(g), Ya(g) on (g. — pe2, & + pe:) such
that if one lets © = pu(g), Yo = Yo(g) Y2 = Ya(g) and
Z, = L~(#"129) then the joint law of (¢,.s, N,[¢2,]) converge
weakly and in the sense of moments to that of a pair (¢, N[¢?])
such that:
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Theorem 1: A.A.-Chandra-Guadagni 2013
Jdp > 0, 3Ly, VL > Lo, Jeo > 0, Ve € (0,6, I[p?]>2[¢],

3 fonctions u(g), Yo(g), Ya(g) on (g. — pe2, & + pe:) such
that if one lets © = pu(g), Yo = Yo(g) Y2 = Ya(g) and
Z, = L~(#"129) then the joint law of (¢,.s, N,[¢2,]) converge
weakly and in the sense of moments to that of a pair (¢, N[¢?])
such that:

@ Wk € Z, (LML), LHINRYLA)) £ (6, NigH)
el <¢(]'Z?,;)7(b(lZg)’(b(lZg),(b(lZ;’;»T <0ie., (b is

non-Gaussian. Here, lzg denotes the indicator function of

B(0,1).
@ (N[¢?](1z3), N[¢*](1z3))" = 1.
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Not too far, if one extrapolates to ¢ = 1, to the most precise
available estimates concerning the classical 3D Ising model
(with nearest-neighbor interactions):

[¢?] — 2[¢] = 0.376327 ... (JHEP 2016 by Kos, Poland,
Simmons-Duffin and Vichi, using conformal bootstrap).



The mixed correlation functions satisfy, in the sense of
distributions,

(O(L™x) -+~ (L™ %a) N[$*) (L™ ¥1) - - N[6*J(L™ ym))

= L BEmEDE (G () - p0m)NE%) (1) - - - N[67](vm))

For p-adic toy model of the 3D fractional ¢* model we also
showed [¢?] — 2[¢] = %€ + o(¢) exactly as expected for the
Euclidean model on R3,

Not too far, if one extrapolates to ¢ = 1, to the most precise
available estimates concerning the classical 3D Ising model
(with nearest-neighbor interactions):

[¢?] — 2[¢] = 0.376327 ... (JHEP 2016 by Kos, Poland,
Simmons-Duffin and Vichi, using conformal bootstrap).

The law v4y 52 of (¢, N[¢?]) is independent of g: universality.
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Vgxq? is fully scale invariant, i.e., invariant under the action of
the scaling group p” instead of the subgroup L”. Moreover,
1(g) and [¢?] are independent of the arbitrary factor L.

The two-point correlations are given in the sense of
distributions by

(5]

(P(x)o(y)) = X =y

&}

(N[¢*](x) N[¢*](y)) = =y Al

Note that 2[q52] =3 _ %6 + 0(6) —y stil] [Bloc |



Theorem 3: A.A., May 2015

Use ¢; to denote ¢ or N[¢?]. Then, for all mixed correlation 3
a smooth fonction (1(z1) - ¥n(2,)) on (Q3)"\Diag which is
locally integrable (on the diagonal Diag and such that

(1(f) - - ha(fa)) =
/ ) <,¢1(Zl) o ¢n(zn)>f1(zl) ce ﬁ1(Zn) d321 e d3Z,,
(Q3)"\Diag

for all test functions f,..., f, € S(Q3).
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Use ¢; to denote ¢ or N[¢?]. Then, for all mixed correlation 3
a smooth fonction (1(z1) - ¥n(2,)) on (Q3)"\Diag which is
locally integrable (on the diagonal Diag and such that

(1(f) - - ha(fa)) =
/ ) <¢1(Zl) o ¢n(zn)>f1(zl) to ﬁ1(Zn) d321 e d3Zn
(Q3)"\Diag

for all test functions f,..., f, € S(Q3).

In other words, v, is DPC (this is the toy model version of
Conj. 2).
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9) Other work in preparation:
Progress towards proof of p-adic analogue of Conj. 3.

3 old work by Lerner and Missarov (early 1990's, i.e., before
AdS/CFT ).

p-adic Mobius group : generated by (ultrametric) isometries,
dilations x + pkx, k € Z and inversion J(x) = |x|°x.

Can also define the absolute cross-ratio for the ultrametric
distance. M(Q?) is also the group of transformations of

Q= (@2 U {00} which preserve this cross-ratio.

The AdS bulk (interior) is the tree T with the graph distance.
Analogue of hyperbolic metric.



Mumford-Manin-Drinfeld Lemma

X1 — X3| |[X2 — X, _ _
CR(x1, X2, X3, Xa) = :Xi —xj: IXz —Xz: = pilaeismx)

where §(x; — x2;x3 — x4) is the number of common edges
for the two bi-infinite paths x; — x and x3 — x4, counted
positively if orientations agree and negatively otherwise.
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Mumford-Manin-Drinfeld Lemma

_ X1 — x3] [x2 — x4 — p0la—ena—xa)
X1 = xa| X2 — ]

CR(X17X27X37X4) : )

where §(x; — x2;x3 — x4) is the number of common edges
for the two bi-infinite paths x; — x and x3 — x4, counted
positively if orientations agree and negatively otherwise.

From lemma, one can deduce a correpondence:
f € M(Q3) <« hyperbolic isometry of the interior T.

The space-dependent RG of ACG 2013 — space-dependent
UV cut-off — Conj. 3 by showing the equivalence between
usual flat (in half-space) cut-off hypersurface and the spherical
one in conformal ball model.



The tree, once again.

=] F = = £ DA
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@ The method: space-dependent
renormalization group
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The renormalization group idea in a nutshell:

Want to study feature Z(V/) of some object V € & but too
hard!

Find “simplifying” transformation RG : & — &, such that
Z(RG(V)) = Z(V), and lim,_,oc RG"(V) = V, with Z(V,)
easy.

Example (Landen-Gauss): V = (a, b) € £ = (0, 00)?

do
\/a2 cos? 6 + b2sin? 6

Take RG(a, b) = (a;b, @).
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In usual rigorous RG couplings are constant in space

Jig: 6 00+ n: s ()%

ACG 2013 — inhomogeneous RG for space-dependent
couplings.

18005 6* 5 (0 ) - ()}

e.g., g(x) = g+ dg(x), with dg(x) a local perturbation such
as test function.

Rigorous nonperturbative version of the local RG:
Wilson-Kogut PR 1974, Drummond-Shore PRD 1979,
Jack-Osborn NPB 1990,. ..

used for generalizations of Zamolodchikov's c-"“Theorem",
study of scale versus conformal invariance, AdS/CFT,. ..
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1st step: switch to unit lattice/cut-off

S,Tﬁ(f) = Iog]El,,’se"d’(f) = log

f d:uC,(¢) exp <_ f/\s{gr : ¢4 ‘r (X) + ¢2 :r}dx + fgb(x)

f (x)dx)

J dic,(6)exp (= [y g 6* o (x) + e 62 o ho)

o LApa(@TAA) _ | 2V
[ duc(@)ZN[0)(¢) 7 z(Vn[o))

with

10000 = e (= [ (a0t 0 () 4 0l

/\S*(

4+ LG~ lohr / o(x) f(L_'x)d3x)



2nd step: define inhomogeneous RG
Fluctuation covariance I := (y — G.
Associated Gaussian measure is the law of the fluctuation field

C(X) = Z pik[(b]Canck(x)

0<k<t

L-blocks (closed balls of radius L) are independent. Hence



2nd step: define inhomogeneous RG
Fluctuation covariance I := (5 — (.
Associated Gaussian measure is the law of the fluctuation field

C(X) = Z pik[(ﬁ]Canck(x)

0<k<t

L-blocks (closed balls of radius L) are independent. Hence

/ ZUN[F)(6) dpcy() = / / O+ ) dur(C)dpc (¢)

_ / TEHIF() dpe (6)

with new integrand

70 f(0) = [T + L) dur()
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Need to extract vacuum renormalization — better definition is
T D[A)(0) = e WD [ TN+ L TIo(L)) dr(c)
so that

[ Ze1(0) duc(0) = 2D [ 107 D1£)(6) dcy(0)

Repeat: Z(rn") — T(rr+1) o 7(rnr+2) 50 T(rs)

One must control

S'(f)= lim Y (56" V[f]) - b(Z"[0]))

s—oo r<q<s

limit of logarithms of characteristic functions.
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Use a Brydges-Yau lift

RGinhom
Vi) (gt

\ \

Z(r.a) N 7(r.q+1)

I(Y,Q)((b): H [ebeAx

A€y
ACA,_,

{exp (—ﬁ4,A O, — B3 Oa ic, —Ban DA e, —PLa : Pa 3Co)
X (1+ Wsa: ¢ ico +Wen : 2 i)
+Ra(éa)}]

Dynamical variable is V = (V)acr, with

Va = (Ban, B3a, Bon, Br,a, Wsn, Wen, fa, Ra)
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RGiphom acts on Eipom, essentially,

I {c" x C°(r,C)}

A€y

Stable subspaces

Erom C Einnom: spatially constant data.

E C Enom: even potential, i.e., g, pu's only and R even
function.

Let RG be induced action of RGiyhom ON £.
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3rd step: stabilize bulk (homogeneous) evolution
Show that ¥q € Z, lim,_,_,, V(r9[0]

exists, i.e.,
lim RGq—f<\7W>[0]>
AL
exists.
g = Lg - Ag® +
RGS w = LFp  — Ag® — Agp +

2
Rl = L(E,N)(R) +
Tadpole graph with mass insertion
As = 12372 / (0, x)? d*x
Q3

is main culprit for anomalous scaling dimension

[¢%] - 2[¢] > 0.
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Irwin's proof — stable manifold W*

Restriction to W*® — contraction — IR fixed point v,.
Construct unstable manifold W", intersect with W?,
transverse at v,.

Here, V(~1[0] is independent of r: strict scaling limit of fixed
model on unit lattice.

Must be chosen in W* — (g) critical mass.

Thus .
Vq € Z, lim V9[0] = v,
r——00

Tangent spaces at fixed point: E® and E".
E" = Ce,, with e, eigenvector of D, RG for eigenvalue
oy = 13729 % 7, = 3%,
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4th step: control inhomogeneous evolution (deviation
from bulk) for all effective (logarithmic) scale g,

Vra[f] — V-9[0] uniformly in r.

1) > .cc ¢ = 0as. — deviation is 0 for g <local constancy
scale of test function f.

2) Deviation resides in closed unit ball containing origin for
q >radius of support of f — exponential decay for large q.
For source term with ¢? add

e / 6% 1, (X))

to potential. S (f, /) now involves two test functions. After
rescaling to unit lattice/cut-off

Yza/ ¢2 Co L X)d

to be combined with 1 into (f2,4)acL, Space-dependent mass.
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5th step: partial linearization

In order to replay same sequence of moves with j present,
construct
V(v,w) = lim RG"(v+ a,"w)

n—o0

for v € W* and all direction w (especially [ : ¢?:).

For v fixed, W(v,-) is parametrization of W" satisfying
V(v,a,w) = RG(V(v,w)).

If there were no W* directions (1D dynamics) then W would

be conjugation — Poincaré-Kcenigs Theorem.

V(v, w) is holomorphic in v and w.
Essential for probabilistic interpretation of (¢, N[$?]) as pair of
random variables in §'(Q3).



Thank you for your attention.



