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At the end of this scaling limit one obtains Brownian motion:
random function [0,+∞)→ RD , t 7→ B(t).

This kind of limiting object has two important properties:

1 universality (many discrete models share this same limit)

2 more symmetries (e.g., 90 degree rotations → all
rotations)

Scale invariance: λ[φ]B(λt)
d
= B(t) for all λ > 0. Here

[φ] = −1
2

is the dimension of the field. Related to the Hurst
(homogeneity) exponent by [φ] = −H . Equivalently,

B(λt)
d
= λ

1
2B(t).

Global conformal invariance (P. Lévy 1940): For all t > 0,

|f ′(t)|[φ]B(f (t))
d
= B(t) where f denotes the inversion

f (t) = 1
t
. Equivalently, tB( 1

t
)

d
= B(t).

The dilation factor λ becomes |f ′(t)|, i.e., local or
space-dependent.
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The purpose of the LHC is to explore physics beyond the
Standard Model. The latter is a (very complicated) example of
quantum field theory.

A simpler model (in fact part of the standard model related to
the Higgs particle) is that of a scalar field with a quartic
self-interaction or φ4 model.

Mathematically, the problem is to construct a probability
measure on the space of “functions” φ : Rd → R heuristically
given by

1

Z
exp

(
−
∫
Rd

{1

2
(∇φ)2(x) + µφ(x)2 + gφ(x)4}ddx

)
Dφ
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3) Mathematical formalization:

A scaling limit is a particular case of limit theorem in
probability. For this one needs a fixed measurable space
(Ω,F) on which one can study the weak convergence of
probability measures Pn → P. Thus Ω must be a topological
space and F must be the corresponding Borel σ-algebra.

Very general and canonical choice: Ω = S ′(Rd) with strong
topology (one could also use weak-∗).
Recall: Let φ : Rd → R be continuous and of temperate
growth. Let L be an integer > 1 (zooming-out factor). Dyadic
techniques in harmonic analysis ↔ L = 2.
For all test function f ∈ S(Rd) we have
Lrd
∑

x∈LrZd φ(x)f (x)→
∫
Rd φ(x)f (x) ddx when r → −∞.

Hence Lrd
∑

x∈LrZd φ(x)δx → φ in S ′(Rd) (for weak-∗).
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The random situation:

Let (σx)x∈Zd be a random field on the lattice with values in
{1,−1} or R (provided a.s. temperate).
One obtains a random Schwartz distribution supported on the
fine lattice with mesh Lr by taking

Lr(d−[φ])
∑
x∈Zd

σxδLrx

with suitable choice of the scaling dimension [φ] for weak
convergence of probability law.

Exercise:
Simple random walk → Brownian motion (d = 1 and D = 1).
Let σx = 0 if x ≤ 0 and σx =

∑
0<y≤x ωy if x > 0, where the

steps ω are independent equal to ±1 with probability 1
2
.
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Let φr = Lr(d−[φ])
∑

x∈Zd σxδLrx. Then for f ∈ S(R) we have

φr (f ) = Lr(1−[φ])
∑
x∈Z

σxf (Lrx)

= Lr(1−[φ])
∑
x>0

( ∑
0<y≤x

ωy

)
f (Lrx)

= Lr(1−[φ])
∑
y>0

ωy

(∑
x≥y

f (Lrx)

)
By the Dominated Convergence Theorem

〈e iφr (f )〉 := E e iφr (f )

= lim
N→+∞

〈
exp

(
i Lr(1−[φ])

∑
0<y≤N

ωy

(∑
x≥y

f (Lrx)

))〉
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〈φ(x1)φ(x2)〉f (x1)f (x2) dx1dx2

where

〈φ(x1)φ(x2)〉 =

{
min(x1, x2) if x1, x2 ≥ 0,
0 otherwise.

Finally, use the Lévy Continuity Theorem on S ′(R). QED
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2D Ising Model:

At the critical temperature, the Ising random field (σx)x∈Z2

with ±1 values is such that the law of
φr = Lr(d−[φ])

∑
x∈Zd σxδLrx, with d = 2 and [φ] = 1

8
converges

weakly, when r → −∞, to a conformally invariant
non-Gaussian probability measure on S ′(R2).

This is not an exercise!!!

Result due to Camia-Garban-Newman (Ann. Probab. 2015)
and Chelkak-Hongler-Izyurov (Ann. Math. 2015).
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1) The 3D fractional φ4 model:

Studied by Brydges-Mitter-Scoppola CMP 2003 and A. A.
CMP 2007. It is a generalization of the φ4 model to fractional
powers of the Laplacien.

Analogy: The Navier-Stokes Equation

∂tu + u · ∇u = ∆u −∇p

generalizes to

∂tu + u · ∇u = −(−∆)αu −∇p

the hyperdissipative Navier-Stokes Equation.

For α > 5
4
, global regularity of solutions was proved by

Katz-Pavlović GAFA 2002.

For all exponant α < 5
4
, this is an open problem.
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Likewise, one can generalize the φ4 model

1

Z
exp

(
−1

2
〈φ, (−∆)φ〉L2 −

∫
Rd

{gφ(x)4 + µφ(x)2}ddx

)
Dφ

to

1

Z
exp

(
−1

2
〈φ, (−∆)αφ〉L2 −

∫
Rd

{gφ(x)4 + µφ(x)2}ddx

)
Dφ

We will focus on the particular case d = 3 and α = 3+ε
4

with

0 < ε� 1.

Can be seen as continuous limit of spin models, like Ising, with
ferromagnetic long-range interactions.
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2) Fourier regularization:

Let C−∞ be the continuous bilinear form on S(R3) given by

C−∞(f , g) =
1

(2π)3

∫
R3

f̂ (ξ)ĝ(ξ)

|ξ|3−2[φ]
d3ξ

where [φ] = 3−ε
4

is the scaling dimension of the field. Let
µC−∞ be the centered Gaussian measure with covariance C−∞.

Mollifier ρUV: C∞ function, R3 → R, compact support,
O(3)-invariant,

∫
ρUV = 1.

Volume cut-off ρIR: C∞ function, R3 → R, compact support,
O(3)-invariant, positive, equal to 1 near origin.

Again, fix zooming-out ratio L > 1.
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For r ∈ Z (UV cut-off r → −∞), let
ρUV,r (x) = L−3rρUV(L−rx).

For s ∈ Z (IR cut-off s →∞), let ρIR,s(x) = ρIR(L−sx).
Let µCr be the law of φ ∗ ρUV,r where φ ∈ S ′(R3) sampled
according to the law µC−∞ .

Given a choice of parameters (gr , µr )r∈Z, one has well-defined
probability measures dνr ,s(φ) whose Radon-Nikodym
derivatives with respect to dµCr (φ) is

∼ exp

(
−
∫
R3

ρIR,s(x)
{
gr : φ4 : (x) + µr : φ2 : (x)

}
d3x

)
with Hermite-Wick order with respect to µCr .

The scale invariant measure for (fractional) φ4 model should
be the weak limit νφ = limr→−∞ lims→∞ νr ,s for a choice
(gr , µr )r∈Z that emulates the scaling limit of a fixed critical
lattice random field (like for 2D Ising).
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Conjecture 1:

Let [φ] = 3−ε
4

with 0 < ε� 1.
There exists a nonempty open interval I ⊂ (0,∞) and a
function µc : I → R such that for all g ∈ I , if one lets
gr = L−r(3−4[φ])g and µr = L−r(3−2[φ])µc(g), then the weak
limit νφ exists, is non-Gaussian, stationary, O(3)-invariant, and

scale invariant with exponent [φ], i.e., λ[φ]φ(λ·) dd
= φ(·) for all

λ > 0.
Moreover, this limit is independent of L and g ∈ I and of the
choice of ρUV, ρIR.

Measure constructed on T3 torus by Mitter (∼ 2004) using RG
fixed point obtained by Brydges-Mitter-Scoppola CMP 2003.
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3) Some definitions:

A probability measure µ on S ′(R3) has moments of all orders
(MAO property) if for all f ∈ S(R3) and all p ∈ [1,∞), the
function φ 7→ φ(f ) is in Lp(S ′(R3), µ).
The n-linear forms given by the moments

Sn(f1, . . . , fn) = 〈φ(f1) · · ·φ(fn)〉 =

∫
S ′(R3)

φ(f1) · · ·φ(fn)dµ(φ)

are automatically continuous (Fernique 1967).

A probability measure µ is determined by correlations (DC) if
it is MAO and the only MAO measure with the same sequence
of moments Sn is µ itself.
By the Schwartz Kernel Theorem Sn can be seen as an
element of S ′(R3n).
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A DC measure µ is determined by pointwise correlations
(DPC) if

1 ∀n, Sn ∈ S ′(R3n) has singular support inside the big
diagonal Diagn = {(x1, . . . , xn) ∈ R3n|∃i 6= j , xi = xj}.
This defines the pointwise correlations
Sn(x1, . . . , xn) = 〈φ(x1) · · ·φ(xn)〉 as C∞ functions on
R3n\Diagn.

2 The pointwise correlations are L1,loc on the big diagonal.

3 For all n and all test functions f1, . . . , fn ∈ S(R3),

〈φ(f1) · · ·φ(fn)〉 =∫
R3n\Diagn

〈φ(x1) · · ·φ(xn)〉f (x1) · · · f (xn)d3x1 · · · d3xn.

Conjecture 2:

νφ is DPC.
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4) Conformal invariance:

Conjecture 3:

The pointwise correlations of νφ satisfy

〈φ(x1) · · ·φ(xn)〉 =

(
n∏

i=1

|Jf (xi)|
[φ]
3

)
× 〈φ(f (x1)) · · ·φ(f (xn))〉

for all f ∈ M(R3) and all collection of distinct points in
R3\{f −1(∞)}.

Here, M(R3) is the Möbius Group of global conformal maps
and Jf (x) is the Jacobian of f at x .
Conj. 3 is a precise formulation of predictions made in
“Conformal invariance in the long-range Ising model” by
Paulos, Rychkov, van Rees and Zan, Nucl. Phys. B 2016 − >
Higher dimensional conformal bootstrap program.



4) Conformal invariance:

Conjecture 3:

The pointwise correlations of νφ satisfy

〈φ(x1) · · ·φ(xn)〉 =

(
n∏

i=1

|Jf (xi)|
[φ]
3

)
× 〈φ(f (x1)) · · ·φ(f (xn))〉

for all f ∈ M(R3) and all collection of distinct points in
R3\{f −1(∞)}.
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5) The Möbius group from an AdS/CFT point of view:

Let R̂3 = R3 ∪ {∞} ' S3. M(R3) is the group of bijective

transformations of R̂3 generated by isometries, dilations and
the unit sphere inversion J(x) = |x |−2x . This is also the
invariance group of the absolute cross-ratio

CR(x1, x2, x3, x4) =
|x1 − x3| |x2 − x4|
|x1 − x4| |x2 − x3|

.

Conformal ball model: R̂3 ' S3 seen as boundary of B4 with
metric ds = 2|dx |

1−|x |2 .

Half-space model: R3 seen as boundary of H4 = R3 × (0,∞)

with metric ds = |dx |
x4

.

Correpondence: f ∈M(R3) ↔ hyperbolic isometry of the
interior B4 or H4.
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1) The hierarchical continuum:

Let p be an integer > 1 (in fact a prime number).

Let Lk , k ∈ Z, be the set of cubes
∏d

i=1[aip
k , (ai + 1)pk) with

a1, . . . , ad ∈ N0. The cubes of Lk form a partition of the
octant [0,∞)d .

Hence T = ∪k∈ZLk naturally has the structure of a doubly
infinite tree which is organized into layers or generations Lk :
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Picture for d = 1, p = 2



Forget [0,∞)d and Rd and just keep the tree.
Define the substitute for the continuum Qd

p := leafs at infinity
“L−∞”.

More precisely, these are the infinite bottom-up paths in the
tree.

A path representing an element x ∈ Qd
p
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A point x ∈ Qd
p is encoded by a sequence (an)n∈Z,

an ∈ {0, 1, . . . , p − 1}d .
Let 0 ∈ Qd

p be the sequence with all digits equal to zero.

Caution! dangerous notation
an represents the local coordinates for a cube of L−n−1 inside
a cube of L−n.
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Moreover, rescaling is defined as follows.
If x = (an)n∈Z then px := (an−1)n∈Z, i.e., upward shift.

Likewise p−1x is downward shift, and so on for the definition
of pkx , k ∈ Z.
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2) Distance:

If x , y ∈ Qd
p , define their distance as |x − y | := pk where k is

the depth where the two paths merge.

Also let |x | := |x − 0|. Because of the dangerous notation

|px | = p−1|x |
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3) Lebesgue measure:

Metric space Qd
p → Borel σ-algebra → Lebesgue measure ddx

which gives a volume pdk to closed balls of radius pk .

Construction: take product of uniform probability measures on
({0, 1, . . . , p − 1}d)N0 for B(0, 1). Do the same for the other
closed unit balls, and collate.
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4) The massless Gaussian measure:

To every litter G of Mama Cat z ∈ Lk+1 associate a centered
Gaussian random vector (ζx)x∈G with pd × pd covariance
matrix made of 1− p−d ’s on the diagonal and −p−d ’s
everywhere else. We impose that Gaussian vectors
corresponding to different layers or different litters are
independent. We have

∑
x∈G ζx = 0 a.s.
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The ancestor function: for k < k ′, x ∈ Lk , let anck ′(x) denote
the ancestor in Lk ′ .

Ditto for anck ′(x) when x ∈ Qd
p .

The massless Gaussian field φ(x), x ∈ Qd
p of scaling dimention

[φ] is given by

φ(x) =
∑
k∈Z

p−k[φ]ζanck (x)

〈φ(x)φ(y)〉 =
c

|x − y |2[φ]

This is heuristic since φ is not well-defined in a pointwise
manner. We need random Schwartz(-Bruhat) distributions.
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5) Test functions:

f : Qd
p → R is smooth if it is locally constant.

Define S(Qd
p) as the space of compactly supported smooth

functions.

We have
S(Qd

p) = ∪n∈NS−n,n(Qd
p)

where for all t− ≤ t+, St−,t+(Qd
p) denotes the space of

functions which are constant in each of the closed balls of
radius pt− and with support inside B(0, pt+).

Topology generated by the set of all possible semi-norms.
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6) Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).
S(Qd

p) ' ⊕NR

Thus
S ′(Qd

p) ' RN

with product topology → Polish space.

Probability Theory on S ′(Qd
p) is super!



6) Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).

S(Qd
p) ' ⊕NR

Thus
S ′(Qd

p) ' RN

with product topology → Polish space.

Probability Theory on S ′(Qd
p) is super!



6) Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).
S(Qd

p) ' ⊕NR

Thus
S ′(Qd

p) ' RN

with product topology → Polish space.

Probability Theory on S ′(Qd
p) is super!



6) Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).
S(Qd

p) ' ⊕NR

Thus
S ′(Qd

p) ' RN

with product topology

→ Polish space.

Probability Theory on S ′(Qd
p) is super!



6) Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).
S(Qd

p) ' ⊕NR

Thus
S ′(Qd

p) ' RN

with product topology → Polish space.

Probability Theory on S ′(Qd
p) is super!



6) Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).
S(Qd

p) ' ⊕NR

Thus
S ′(Qd

p) ' RN

with product topology → Polish space.

Probability Theory on S ′(Qd
p) is super!



1 Prokhorov’s Theorem

2 Bochner’s Theorem

3 Lévy’s Continuity Theorem

4 Uniform convergence of characteristic functions in a
complex neighborhood of the origin implies weak
convergence of probability measures (use moments or the
Vitali-Porter Theorem).

5 The renormalization group (RG) techniques introduced by
A.A.-Chandra-Guadagni (arXiv 2013) especially suitable
for such convergence criterion.

6 S ′(Qd
p)× S ′(Qd

p) ' S ′(Qd
p) the machinery also works for

join laws of pairs of random distributions, e.g., (φ,N[φ2])
in following slides.
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7) The p-adic CFT toy model:

d = 3, [φ] = 3−ε
4

, L = p` zooming-out factor

r ∈ Z UV cut-off, r → −∞

s ∈ Z IR cut-off, s →∞

The regularized Gaussian measure µCr is the law of

φr (x) =
∞∑

k=`r

p−k[φ]ζanck (x)

Sample fields are true fonctions that are locally constant on
scale Lr .
These measures are scaled copies of each other.
If the law of φ(·) is µC0 , then that of L−r [φ]φ(Lr ·) is µCr .
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Fix the parameters g , µ and let gr = L−(3−4[φ])rg and
µr = L−(3−2[φ])rµ.

Let Λs = B(0, Ls), IR (or volume) cut-off.

Let

Vr ,s(φ) =

∫
Λs

{gr : φ4 :Cr (x) + µr : φ2 :Cr (x)}d3x

and define the probability measure

dνr ,s(φ) =
1

Zr ,s
e−Vr,s(φ)dµCr (φ)
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Let φr ,s be the random distribution in S ′(Q3
p) sampled

according to νr ,s and define the squared field Nr [φ
2
r ,s ] which is

a deterministic function(al) of φr ,s , with values in S ′(Q3
p),

given by

Nr [φ
2
r ,s ](j) = Z r

2

∫
Q3

p

{Y2 : φ2
r ,s :Cr (x)− Y0L

−2r [φ]} j(x) d3x

for suitable parameters Z2, Y0, Y2.

The main result concerns the limit law of the pair
(φr ,s ,Nr [φ

2
r ,s ]) in S ′(Q3

p)× S ′(Q3
p) when r → −∞, s →∞ (in

any order).
For the precise statement we need the approximate fixed point
value

ḡ∗ =
pε − 1

36Lε(1− p−3)
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8) Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

∃ρ > 0, ∃L0, ∀L ≥ L0, ∃ε0 > 0, ∀ε ∈ (0, ε0], ∃[φ2]>2[φ],

∃ fonctions µ(g), Y0(g), Y2(g) on (ḡ∗ − ρε
3
2 , ḡ∗ + ρε

3
2 ) such

that if one lets µ = µ(g), Y0 = Y0(g), Y2 = Y2(g) and
Z2 = L−([φ2]−2[φ]) then the joint law of (φr ,s ,Nr [φ

2
r ,s ]) converge

weakly and in the sense of moments to that of a pair (φ,N[φ2])
such that:

1 ∀k ∈ Z, (L−k[φ]φ(Lk ·), L−k[φ2]N[φ2](Lk ·))
d
= (φ,N[φ2]).

2 〈φ(1Z3
p
), φ(1Z3

p
), φ(1Z3

p
), φ(1Z3

p
)〉T < 0 i.e., φ is

non-Gaussian. Here, 1Z3
p

denotes the indicator function of

B(0, 1).

3 〈N[φ2](1Z3
p
),N[φ2](1Z3

p
)〉T = 1.
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The mixed correlation functions satisfy, in the sense of
distributions,

〈φ(L−kx1) · · ·φ(L−kxn)N[φ2](L−ky1) · · ·N[φ2](L−kym)〉

= L−(n[φ]+m[φ2])k〈φ(x1) · · ·φ(xn)N[φ2](y1) · · ·N[φ2](ym)〉

For p-adic toy model of the 3D fractional φ4 model we also
showed [φ2]− 2[φ] = 1

3
ε + o(ε) exactly as expected for the

Euclidean model on R3.

Not too far, if one extrapolates to ε = 1, to the most precise
available estimates concerning the classical 3D Ising model
(with nearest-neighbor interactions):
[φ2]− 2[φ] = 0.376327 . . . (JHEP 2016 by Kos, Poland,
Simmons-Duffin and Vichi, using conformal bootstrap).

The law νφ×φ2 of (φ,N[φ2]) is independent of g : universality.
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Theorem 2: A.A.-Chandra-Guadagni 2013

νφ×φ2 is fully scale invariant, i.e., invariant under the action of
the scaling group pZ instead of the subgroup LZ. Moreover,
µ(g) and [φ2] are independent of the arbitrary factor L.

The two-point correlations are given in the sense of
distributions by

〈φ(x)φ(y)〉 =
c1

|x − y |2[φ]

〈N[φ2](x) N[φ2](y)〉 =
c2

|x − y |2[φ2]

Note that 2[φ2] = 3− 1
3
ε + o(ε) → still L1,loc !
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Theorem 3: A.A., May 2015

Use ψi to denote φ or N[φ2]. Then, for all mixed correlation ∃
a smooth fonction 〈ψ1(z1) · · ·ψn(zn)〉 on (Q3

p)n\Diag which is
locally integrable (on the diagonal Diag and such that

〈ψ1(f1) · · ·ψn(fn)〉 =∫
(Q3

p)n\Diag

〈ψ1(z1) · · ·ψn(zn)〉f1(z1) · · · fn(zn) d3z1 · · · d3zn

for all test functions f1, . . . , fn ∈ S(Q3
p).

In other words, νφ×φ2 is DPC (this is the toy model version of
Conj. 2).
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9) Other work in preparation:

Progress towards proof of p-adic analogue of Conj. 3.

∃ old work by Lerner and Missarov (early 1990’s, i.e., before
AdS/CFT !).

p-adic Möbius group : generated by (ultrametric) isometries,
dilations x 7→ pkx , k ∈ Z and inversion J(x) = |x |2x .

Can also define the absolute cross-ratio for the ultrametric
distance. M(Q3

p) is also the group of transformations of

Q̂3
p = Q3

p ∪ {∞} which preserve this cross-ratio.

The AdS bulk (interior) is the tree T with the graph distance.
Analogue of hyperbolic metric.
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Mumford-Manin-Drinfeld Lemma

CR(x1, x2, x3, x4) :=
|x1 − x3| |x2 − x4|
|x1 − x4| |x2 − x3|

= p−δ(x1→x2;x3→x4) ,

where δ(x1 → x2; x3 → x4) is the number of common edges
for the two bi-infinite paths x1 → x2 and x3 → x4, counted
positively if orientations agree and negatively otherwise.

From lemma, one can deduce a correpondence:
f ∈M(Q3

p) ↔ hyperbolic isometry of the interior T.

The space-dependent RG of ACG 2013 → space-dependent
UV cut-off → Conj. 3 by showing the equivalence between
usual flat (in half-space) cut-off hypersurface and the spherical
one in conformal ball model.
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The tree, once again.
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2 The Euclidean CFT model: conjectures

3 The p-adic toy model: some theorems

4 The method: space-dependent
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The renormalization group idea in a nutshell:

Want to study feature Z(~V ) of some object ~V ∈ E but too
hard!

Find “simplifying” transformation RG : E → E , such that
Z(RG (~V )) = Z(~V ), and limn→∞ RG n(~V ) = ~V∗ with Z(~V∗)
easy.

Example (Landen-Gauss): ~V = (a, b) ∈ E = (0,∞)2

Z(~V ) =

∫ π
2

0

dθ√
a2 cos2 θ + b2 sin2 θ

Take RG (a, b) =
(

a+b
2
,
√
ab
)

.
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In usual rigorous RG couplings are constant in space∫
{g : φ4 : (x) + µ : φ2 : (x)}ddx

ACG 2013 → inhomogeneous RG for space-dependent
couplings. ∫

{g(x) : φ4 : (x) + µ(x) : φ2 : (x)}ddx

e.g., g(x) = g + δg(x), with δg(x) a local perturbation such
as test function.
Rigorous nonperturbative version of the local RG:
Wilson-Kogut PR 1974, Drummond-Shore PRD 1979,
Jack-Osborn NPB 1990,. . .
used for generalizations of Zamolodchikov’s c-“Theorem”,
study of scale versus conformal invariance, AdS/CFT,. . .
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1st step: switch to unit lattice/cut-off

ST
r ,s(f ) := logEνr,se iφ(f ) = log∫

dµCr (φ) exp
(
−
∫

Λs
{gr : φ4 :r (x) + µr : φ2 :r}dx +

∫
φ(x)f (x)dx

)
∫
dµCr (φ) exp

(
−
∫

Λs
{gr : φ4 :r (x) + µr : φ2 :r}dx

)

= log

∫
dµC0(φ)I(r ,r)[f ](φ)∫
dµC0(φ)I(r ,r)[0](φ)

=: log
Z(~V (r ,r)[f ])

Z(~V (r ,r)[0])

with

I(r ,r)[f ](φ) = exp

(
−
∫

Λs−r

{g : φ4 :0 (x) + µ : φ2 :0}d3x

+L(3−[φ])r

∫
φ(x)f (L−rx)d3x

)
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2nd step: define inhomogeneous RG
Fluctuation covariance Γ := C0 − C1.
Associated Gaussian measure is the law of the fluctuation field

ζ(x) =
∑

0≤k<`

p−k[φ]ζanck (x)

L-blocks (closed balls of radius L) are independent. Hence

∫
I(r ,r)[f ](φ) dµC0(φ) =

∫ ∫
I(r ,r)[f ](ζ +ψ) dµΓ(ζ)dµC1(ψ)

=

∫
I(r ,r+1)[f ](φ) dµC0(φ)

with new integrand

I(r ,r+1)[f ](φ) =

∫
I(r ,r)[f ](ζ + L−[φ]φ(L·)) dµΓ(ζ)
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Need to extract vacuum renormalization → better definition is

I(r ,r+1)[f ](φ) = e−δb(I(r,r)[f ])

∫
I(r ,r)[f ](ζ + L−[φ]φ(L·)) dµΓ(ζ)

so that∫
I(r ,r)[f ](φ) dµC0(φ) = eδb(I(r,r)[f ])

∫
I(r ,r+1)[f ](φ) dµC0(φ)

Repeat: I(r ,r) → I(r ,r+1) → I(r ,r+2) → · · · → I(r ,s)

One must control

ST(f ) = lim
r→−∞
s→∞

∑
r≤q<s

(
δb(I(r ,q)[f ])− δb(I(r ,q)[0])

)
limit of logarithms of characteristic functions.
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Use a Brydges-Yau lift

RGinhom

~V (r ,q) −→ ~V (r ,q+1)

↓ ↓
I(r ,q) −→ I(r ,q+1)

I(r ,q)(φ) =
∏
∆∈L0

∆⊂Λs−q

[
e f∆φ∆×

{
exp
(
−β4,∆ : φ4

∆ :C0 −β3,∆ : φ3
∆ :C0 −β2,∆ : φ2

∆ :C0 −β1,∆ : φ1
∆ :C0

)
×
(
1 + W5,∆ : φ5

∆ :C0 +W6,∆ : φ6
∆ :C0

)
+R∆(φ∆)}]

Dynamical variable is ~V = (V∆)∆∈L0 with

V∆ = (β4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆,R∆)
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RGinhom acts on Einhom, essentially,∏
∆∈L0

{
C7 × C 9(R,C)

}

Stable subspaces

Ehom ⊂ Einhom: spatially constant data.
E ⊂ Ehom: even potential, i.e., g , µ’s only and R even
function.
Let RG be induced action of RGinhom on E .
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3rd step: stabilize bulk (homogeneous) evolution

Show that ∀q ∈ Z, limr→−∞ ~V (r ,q)[0]
exists, i.e.,

lim
r→−∞

RG q−r
(
~V (r ,r)[0]

)
exists.

RG


g ′ = Lεg − A1g

2 + · · ·
µ′ = L

3+ε
2 µ − A2g

2 − A3gµ + · · ·
R ′ = L(g ,µ)(R) + · · ·

Tadpole graph with mass insertion

A3 = 12L3−2[φ]

∫
Q3

p

Γ(0, x)2 d3x

is main culprit for anomalous scaling dimension
[φ2]− 2[φ] > 0.
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Irwin’s proof → stable manifold W s

Restriction to W s → contraction → IR fixed point v∗.

Construct unstable manifold W u, intersect with W s,
transverse at v∗.

Here, ~V (r ,r)[0] is independent of r : strict scaling limit of fixed
model on unit lattice.
Must be chosen in W s → µ(g) critical mass.

Thus
∀q ∈ Z, lim

r→−∞
~V (r ,q)[0] = v∗

Tangent spaces at fixed point: E s and E u.
E u = Ceu, with eu eigenvector of Dv∗RG for eigenvalue
αu = L3−2[φ] × Z2 =: L3−[φ2].
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4th step: control inhomogeneous evolution (deviation
from bulk) for all effective (logarithmic) scale q,
~V (r ,q)[f ]− ~V (r ,q)[0] uniformly in r .

1)
∑

x∈G ζx = 0 a.s. → deviation is 0 for q <local constancy
scale of test function f .
2) Deviation resides in closed unit ball containing origin for
q >radius of support of f → exponential decay for large q.
For source term with φ2 add

Y2Z
r
2

∫
: φ2 :Cr (x)j(x)d3x

to potential. ST
r ,s(f , j) now involves two test functions. After

rescaling to unit lattice/cut-off

Y2α
r
u

∫
: φ2 :C0 (x)j(L−rx)d3x

to be combined with µ into (β2,∆)∆∈L0 space-dependent mass.
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5th step: partial linearization

In order to replay same sequence of moves with j present,
construct

Ψ(v ,w) = lim
n→∞

RG n(v + α−nu w)

for v ∈ W s and all direction w (especially
∫

: φ2 :).

For v fixed, Ψ(v , ·) is parametrization of W u satisfying
Ψ(v , αuw) = RG (Ψ(v ,w)).

If there were no W s directions (1D dynamics) then Ψ would
be conjugation → Poincaré-Kœnigs Theorem.

Ψ(v ,w) is holomorphic in v and w .
Essential for probabilistic interpretation of (φ,N[φ2]) as pair of
random variables in S ′(Q3

p).
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Thank you for your attention.


