Notes on the cluster expansion for the polymer gas, a.k.a., the Mayer expansion

Let Λ be the finite set of lattice sites in \mathbb{Z}^{d}. Any nonempty subset $Y \subset \Lambda$ is called a polymer. We denote by $\mathbf{P}(\Lambda)$ the set of all such polymers. On the complex space $\mathbb{C}^{\mathbf{P}(\Lambda)}$ we consider the polynomial (in fact multiaffine) function \mathcal{Z}_{Λ} defined by

$$
\mathcal{Z}_{\Lambda}(z)=\sum_{p \geq 0} \frac{1}{p!} \sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)} \mathbb{1}\left\{\begin{array}{c}
\text { the } Y_{i} \text { are } \\
\text { disjoint }
\end{array}\right\} z\left(Y_{1}\right) \ldots z\left(Y_{p}\right)
$$

for any $z=(z(Y))_{Y \in \mathbf{P}(\Lambda)}$ in $\mathbb{C}^{\mathbf{P}(\Lambda)}$. The variable $z(Y)$ is called the activity of the the polymer Y. The purpose of this section is to give an explicit formula for the logarithm of \mathcal{Z}_{Λ}. This is called the cluster expansion for the polymer gas in the statistical mechanics literature, whereas in the constructive field theory literature it is rather called the Mayer expansion.

Given a collection Y_{1}, \ldots, Y_{p} of polymers, we use the notation $\phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p}\right)$ for the corresponding Mayer coefficient a.k.a Ursell function. It is defined by

$$
\phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p}\right)=\sum_{\substack{H \sim \sim[p] \\ H \subset G}}(-1)^{|H|}
$$

where G is the graph with vertex set $[p]=\{1, \ldots, p\}$ and edges corresponding to the pairs $\{i, j\}, i \neq j$, such that $Y_{i} \cap Y_{j} \neq \emptyset$. The sum is over all spanning connecting subgraphs H which are identified with their edge sets. We use the notation $H \rightsquigarrow[p]$ to express this condition. Clearly, the Mayer coefficient is a symmetric function of its arguments Y_{1}, \ldots, Y_{p}.
Remark 1 One can show that $\phi^{T}\left(Y_{1}, \ldots, Y_{p}\right)$ is none other than the Möbius function $\mu_{G}(\hat{0}, \hat{1})$ of L_{G} the lattice of contractions of the graph G, i.e., the lattice of partitions of the vertex set $[p]$ whose blocks are internally connected. By the latter we mean that any pair of points in the block can be joined by a path made of edges of G which are contained in the block. This lattice is well known in combinatorics, especially in relation to the chromatic polynomial of such a graph G (see e.g. [8, Exercise 44, p. 162]). We will see that in a forthcoming lecture.

On the space $\mathbb{C}^{\mathbf{P}(\Lambda)}$ of polymer activities we will use the norm

$$
\|z\|=\sup _{\mathbf{x} \in \Lambda} \sum_{Y \in \mathbf{P}(\Lambda)} \mathbb{1}\{\mathbf{x} \in Y\}|z(Y)| e^{|Y|} .
$$

We can now state the following classical result (see, e.g., $[3,1,4]$ as well as [7, Ch. V]).

Theorem 1 The series

$$
f_{\Lambda}(z)=\sum_{p \geq 1} \frac{1}{p!} \sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)} \phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p}\right) z\left(Y_{1}\right) \ldots z\left(Y_{p}\right)
$$

is absolutely convergent and defines an analytic function $f_{\Lambda}(z)$ on the open ball $\|z\|<\frac{1}{4}$. On this domain one has

$$
\exp f_{\Lambda}(z)=\mathcal{Z}_{\Lambda}(z)
$$

The following is a classical result in rigorous statistical mechanics (see e.g. [7, Thm. V.7A.6]) which we will need in order to prove Theorem 1.

Lemma 1 [6, 5] One has the inequality

$$
\left|\phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p}\right)\right| \leq \sum_{\substack{\mathcal{T} \text { tree } \\ \mathcal{T} \rightsquigarrow[p]}} \prod_{\{i, j\} \in \mathcal{T}} \mathbb{1}\left\{Y_{i} \cap Y_{j} \neq \emptyset\right\} .
$$

Moreover, the sign of this Mayer coefficient is $(-1)^{p-1}$.
We will see the proof of this lemma in a forthcoming lecture.

Proof of Theorem 1: Let

$$
\Gamma=\sum_{p \geq 1} \frac{1}{p!} \sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)}\left|\phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p}\right)\right| \times\left|z\left(Y_{1}\right)\right| \ldots\left|z\left(Y_{p}\right)\right|
$$

From Lemma 1 one obtains

$$
\begin{aligned}
\Gamma & \leq \sum_{p \geq 1} \frac{1}{p!} \sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)} \sum_{\substack{\mathcal{T} \text { tree } \\
\mathcal{T} \rightsquigarrow[p]}}\left(\prod_{\{i, j\} \in \mathcal{T}} \mathbb{1}\left\{Y_{i} \cap Y_{j} \neq \emptyset\right\}\right)\left(\prod_{i=1}^{p}\left|z\left(Y_{i}\right)\right|\right) \\
& \leq \sum_{Y \in \mathbf{P}(\Lambda)}|z(Y)|+\sum_{p \geq 2} \frac{1}{p!} \sum_{\substack{d_{1}, \ldots, d_{p} \geq 1 \\
\Sigma d_{i}=2 p-2}} \sum_{\substack{\mathcal{T} \text { tree } \\
\mathcal{T} \rightsquigarrow[p]}} \mathbb{1}\left\{\begin{array}{c}
\forall i, \text { degree of } \\
i \text { in } \mathcal{T} \text { is } d_{i}
\end{array}\right\} M(\mathcal{T})
\end{aligned}
$$

where

$$
M(\mathcal{T})=\sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)}\left(\prod_{\{i, j\} \in \mathcal{T}} \mathbb{1}\left\{Y_{i} \cap Y_{j} \neq \emptyset\right\}\right)\left(\prod_{i=1}^{p}\left|z\left(Y_{i}\right)\right|\right)
$$

Now one has the following 'pin and sum' inequality:

$$
\begin{equation*}
M(\mathcal{T}) \leq|\Lambda| \times\|z\|^{p} \times d_{1}!\times \prod_{i=2}^{p}\left(d_{i}-1\right)! \tag{1}
\end{equation*}
$$

This is shown by choosing a root for the tree, say the vertex numbered 1 , then summing recursively over the Y_{i} for i a leaf of the tree, and progressing towards the root. If j is the parent of the leaf i in the tree one has to bound

$$
\begin{aligned}
\sum_{Y_{i} \in \mathbf{P}(\Lambda)} \mathbb{1}\left\{Y_{i} \cap Y_{j} \neq \emptyset\right\}\left|z\left(Y_{i}\right)\right| & \leq \sum_{Y_{i} \in P(\Lambda)} \sum_{\mathbf{x} \in Y_{j}} \mathbb{1}\left\{\mathbf{x} \in Y_{i}\right\}\left|z\left(Y_{i}\right)\right| \\
& \leq\left|Y_{j}\right| \times\|z\|
\end{aligned}
$$

at which point one erases i and continues the process. However, when one considers a vertex j which is deeper in the initial tree, such a vertex has received an additional factor $\left|Y_{j}\right|$ from each of its offsprings, of which there are $d_{j}-1$ if j is different from the root 1 , and d_{j} if $j=1$ is the root. So in case $j \neq 1$ one has to bound

$$
\begin{aligned}
& \sum_{Y_{j} \in \mathbf{P}(\Lambda)} \mathbb{1}\left\{Y_{j} \cap Y_{k} \neq \emptyset\right\}\left|Y_{j}\right|^{d_{j}-1} \times\left|z\left(Y_{j}\right)\right| \\
& \quad \leq \sum_{Y_{j} \in \mathbf{P}(\Lambda)} \sum_{\mathbf{x} \in Y_{k}} \mathbb{1}\left\{\mathbf{x} \in Y_{j}\right\}\left(d_{j}-1\right)!e^{\left|Y_{j}\right|}\left|z\left(Y_{j}\right)\right| \\
& \quad \leq\left|Y_{k}\right| \times\|z\| \times\left(d_{j}-1\right)!
\end{aligned}
$$

where k is the parent of j, and we used the inequality $\frac{x^{n}}{n!} \leq e^{x}$ for x nonnegative.
In case $j=1$ one writes

$$
\begin{aligned}
& \sum_{Y_{1} \in \mathbf{P}(\Lambda)}\left|Y_{1}\right|^{d_{1}} \times\left|z\left(Y_{1}\right)\right| \\
& \quad \leq \sum_{Y_{1} \in \mathbf{P}(\Lambda)} \sum_{\mathbf{x} \in \Lambda} \mathbb{1}\left\{\mathbf{x} \in Y_{1}\right\} d_{1}!e^{\left|Y_{1}\right|}\left|z\left(Y_{1}\right)\right| \\
& \quad \leq|\Lambda| \times\|z\| \times d_{1}!
\end{aligned}
$$

using the fact that polymers here are nonempty and contained in Λ. Hence (1) is established.

As a result

$$
\begin{aligned}
\Gamma \leq & |\Lambda| \cdot\left|\mid z \|+\sum_{p \geq 2} \frac{1}{p!} \sum_{\substack{d_{1}, \ldots, d_{p} \geq 1 \\
\Sigma d_{i}=2_{p}-2}} \sum_{\substack{\mathcal{T} \text { tree } \\
\mathcal{T} \leadsto[p]}}\right. \\
& \mathbb{1}\left\{\begin{array}{c}
\forall i, \text { degree of } \\
i \text { in } \mathcal{T} \text { is } d_{i}
\end{array}\right\} \times|\Lambda| \times\|z\|^{p} \times d_{1}!\times \prod_{i=2}^{p}\left(d_{i}-1\right)!.
\end{aligned}
$$

But by Cayley's second theorem (proof of this soon) which counts labelled trees with fixed vertex degrees one has:

$$
\sum_{\substack{\mathcal{T} \text { tree } \\
\mathcal{T} \rightsquigarrow[p]}} \mathbb{1}\left\{\begin{array}{c}
\forall i \text {, degree of } \\
i \text { in } \mathcal{T} \text { is } d_{i}
\end{array}\right\}=\frac{(p-2)!}{\prod_{i=1}^{p}\left(d_{i}-1\right)!} .
$$

Thus

$$
\begin{aligned}
\Gamma \leq & |\Lambda| \times\|z\|+\sum_{p \geq 2} \frac{1}{p!} \sum_{\substack{d_{1}, \ldots, d_{p} \geq 1 \\
\Sigma d_{i}=2_{p}-2}} \frac{(p-2)!}{\prod_{i=1}^{p}\left(d_{i}-1\right)!} \\
& \times|\Lambda| \times \|\left. z\right|^{p} \times d_{1}!\times \prod_{i=2}^{p}\left(d_{i}-1\right)!.
\end{aligned}
$$

We now clean up the factorials and bound the left over factor of d_{1} by $d_{1} \leq p-1$ because the root can have at most $p-1$ (everybody else) neighbors in the tree. Then we have

$$
\Gamma \leq|\Lambda| \times\|z\|+\sum_{p \geq 2} \frac{|\Lambda| \times \|\left. z\right|^{p}}{p} \sum_{\substack{d_{1}, \ldots, d_{p} \geq 1 \\ \Sigma d_{i}=2 p-2}} 1
$$

but, using the change of summation variables $\alpha_{i}=d_{i}-1$, we have

$$
\begin{aligned}
\sum_{\substack{d_{1}, \ldots, d_{p} \geq 1 \\
\Sigma d_{i}=2 p-2}} 1 & =\sum_{\substack{\alpha_{1}, \ldots, \alpha_{p} \geq 0 \\
\Sigma \alpha_{i}=p-2}} 1 \\
& =\binom{p-2+p-1}{p-1}
\end{aligned}
$$

simply by counting configurations of $p-1$ black balls in a chain of $p-2+p-$ 1 white or black balls. Stirling's formula shows that the binomial coefficient behaves like $\frac{1}{\sqrt{\pi p}} 2^{2 p-3}$ for large p. Since we only care about the radius of convergence in z we will just use the coarse bound by $2^{2 p-3}$. Hence,

$$
\Gamma \leq|\Lambda| \times\|z\|+\sum_{p \geq 2} \frac{1}{p} \times|\Lambda| \times\|z\|^{p} \times 2^{2 p-3}
$$

which proves the absolute convergence of the series, as well as the existence and analyticity of $f_{\Lambda}(z)$ in the ball $\|z\|<\frac{1}{4}$.

In order to show that $\mathcal{Z}_{\Lambda}=\exp f_{\Lambda}$, first note that for a sequence of polymers Y_{1}, \ldots, Y_{p} one has

$$
\begin{align*}
\mathbb{1}\left\{\begin{array}{c}
\text { the } Y_{i} \text { are } \\
\text { disjoint }
\end{array}\right\} & =\prod_{\{i, j\} \in[p]^{(2)}}\left(1-\mathbb{1}_{\left\{Y_{i} \cap Y_{j} \neq \emptyset\right\}}\right) \\
& =\sum_{\mathrm{g} \subset[p]^{(2)}} \prod_{\{i, j\} \in \mathrm{g}}\left(-\mathbb{1}_{\left\{Y_{i} \cap Y_{j} \neq \emptyset\right\}}\right) \\
& =\sum_{\pi \text { partition of }[p]} \prod_{J \in \pi}\left[\sum_{\mathfrak{g}_{J} \subset J^{(2)}} \prod_{\{i, j\} \in \mathrm{g}_{J}}\left(-\mathbb{1}_{\left\{Y_{i} \cap Y_{j} \neq \emptyset\right\}}\right)\right] \\
& =\sum_{\pi \text { partition of }[p]} \prod_{J \in \pi} \phi^{\mathrm{T}}\left(Y_{J}\right) \tag{2}
\end{align*}
$$

where we simply wrote $\phi^{\mathrm{T}}\left(Y_{J}\right)=\phi^{\mathrm{T}}\left(Y_{j_{1}}, \ldots, Y_{j_{k}}\right)$ for any subset $J=\left\{j_{1}, \ldots, j_{k}\right\}$ of $[p]$. Now consider the series of nonnegative terms

$$
\begin{aligned}
\mathcal{U}= & \sum_{p \geq 0} \sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)} \sum_{k \geq 0} \sum_{J_{1}, \ldots, J_{k} \subset[p]} \\
& \mathbb{1}\left\{\begin{array}{c}
\text { the } J_{i} \text { form a } \\
\text { partition of }[p]
\end{array}\right\} \frac{1}{p!k!}\left(\prod_{i=1}^{k}\left|\phi^{\mathrm{T}}\left(Y_{J_{i}}\right)\right|\right)\left(\prod_{j=1}^{p}\left|z\left(Y_{j}\right)\right|\right)
\end{aligned}
$$

which a priori belongs to the completed half line $[0,+\infty]$. Without having to worry about convergence, one can rearrange it using the discrete version of Tonelli's Theorem as

$$
\begin{aligned}
\mathcal{U}= & \sum_{p \geq 0} \frac{1}{p!} \sum_{k \geq 0} \frac{1}{k!} \sum_{J_{1}, \ldots, J_{k} \subset[p]} \\
& \mathbb{1}\left\{\begin{array}{c}
\text { the } J_{i} \text { form a } \\
\text { partition of }[p]
\end{array}\right\} \prod_{i=1}^{k}\left(\sum_{\left(Y_{j}\right)_{j \in J_{i}}}\left|\phi^{\mathrm{T}}\left(Y_{J_{i}}\right)\right| \prod_{j \in J_{i}}\left|z\left(Y_{j}\right)\right|\right) \\
& =\sum_{p \geq 0} \frac{1}{p!} \sum_{k \geq 0} \frac{1}{k!} \sum_{p_{1}, \ldots, p_{k} \geq 1} \sum_{J_{1}, \ldots, J_{k} \subset[p]} \mathbb{1}\left\{\forall i,\left|J_{i}\right|=p_{i}\right\} \\
& \mathbb{1}\left\{\begin{array}{c}
\text { the } J_{i} \text { form a } \\
\text { partition of }[p]
\end{array}\right\} \prod_{i=1}^{k}\left(\sum_{Y_{1}, \ldots, Y_{p_{i}}}\left|\phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p_{i}}\right)\right| \prod_{j=1}^{p_{i}}\left|z\left(Y_{j}\right)\right|\right)
\end{aligned}
$$

since the sums over the polymers only depend on the cardinalities p_{i} of the sets J_{i}. Thus

$$
\begin{aligned}
\mathcal{U} & =\sum_{p \geq 0} \frac{1}{p!} \sum_{k \geq 0} \frac{1}{k!} \sum_{\substack{p_{1}, \ldots, p_{k} \geq 1 \\
\Sigma p_{i}=p}} \frac{p!}{p_{1}!\ldots p_{k}!} \prod_{i=1}^{k}\left(\sum_{Y_{1}, \ldots, Y_{p_{i}}}\left|\phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p_{i}}\right)\right| \prod_{j=1}^{p_{i}}\left|z\left(Y_{j}\right)\right|\right) \\
& =\sum_{k \geq 0} \frac{1}{k!} \sum_{p_{1}, \ldots, p_{k} \geq 1} \frac{1}{p_{1}!\ldots, p_{k}!} \prod_{i=1}^{k}\left(\sum_{Y_{1}, \ldots, Y_{p_{i}}}\left|\phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p_{i}}\right)\right| \prod_{j=1}^{p_{i}}\left|z\left(Y_{j}\right)\right|\right) \\
& =\exp (\Gamma)<+\infty .
\end{aligned}
$$

As a result, if one does the same calculation again but without the $|\cdot|$'s, the series are absolutely convergent and the manipulations are justified. One therefore gets

$$
\begin{aligned}
& \exp f_{\Lambda}(z)=\sum_{p \geq 0} \sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)} \sum_{k \geq 0} \sum_{J_{1}, \ldots, J_{k} \subset[p]} \\
& \mathbb{1}\left\{\begin{array}{c}
\text { the } J_{i} \text { form a } \\
\text { partition of }[p]
\end{array}\right\} \frac{1}{p!k!}\left(\prod_{i=1}^{k} \phi^{\mathrm{T}}\left(Y_{J_{i}}\right)\right)\left(\prod_{j=1}^{p} z\left(Y_{j}\right)\right),
\end{aligned}
$$

namely,

$$
\begin{aligned}
\exp f_{\Lambda}(z) & =\sum_{p \geq 0} \sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda) \pi} \sum_{\text {partition of }[p]} \frac{1}{p!}\left(\prod_{J \in \pi} \phi^{\mathrm{T}}\left(Y_{J}\right)\right)\left(\prod_{j=1}^{p} z\left(Y_{j}\right)\right) \\
& =\mathcal{Z}_{\Lambda}(z)
\end{aligned}
$$

because of (2).
Remark 2 We essentially followed the presentation due to Cammarota [1] which perhaps is the simplest and most direct. The $\|z\|$ small condition is often referred to as the Kotecky-Preiss criterion [4]. However, it is not optimal. The best available bounds can be found in [2].

We can isolate from the proof of Theorem 1 the following lemma.
Lemma 2 For polymer activities $z(Y), Y \in \mathbf{P}(\Lambda)$, such that $\|z\|<\frac{1}{4}$ we have the bound

$$
\begin{align*}
& \sup _{\mathbf{z} \in \Lambda} \sum_{p \geq 1} \frac{1}{p!} \sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)} \mathbb{1}\left\{\mathbf{z} \in \cup_{q=1}^{p} Y_{q}\right\} \\
& \quad \times\left|\phi^{\mathrm{T}}\left(Y_{1}, \ldots, Y_{p}\right)\right| \times\left|z\left(Y_{1}\right)\right| \ldots\left|z\left(Y_{p}\right)\right| \leq \frac{4| | z| |}{1-4| | z| |} . \tag{3}
\end{align*}
$$

Proof: First fix some z and write

$$
\mathbb{1}\left\{\mathbf{z} \in \cup_{q=1}^{p} Y_{q}\right\} \leq \sum_{q_{0}=1}^{p} \mathbb{1}\left\{\mathbf{z} \in Y_{q_{0}}\right\}
$$

so that the left-hand side Γ_{0} of (3), without the sup over \mathbf{z}, will satisfy

$$
\begin{aligned}
\Gamma_{0} \leq & \sum_{Y \in \mathbf{P}(\Lambda)} \mathbb{1}\{\mathbf{z} \in Y\}|z(Y)| \\
& +\sum_{p \geq 2} \frac{1}{p!} \sum_{\substack{q_{0}=1}}^{p} \sum_{\substack{d_{1}, \ldots, d_{p} \geq 1 \\
\Sigma d_{i}=2 p-2}} \sum_{\substack{\mathcal{T} \text { tree } \\
\mathcal{T} \leadsto[p]}} \mathbb{1}\left\{\begin{array}{c}
\forall i, \text { degree of } \\
i \text { in } \mathcal{T} \text { is } d_{i}
\end{array}\right\} M_{q_{0}}(\mathcal{T})
\end{aligned}
$$

with

$$
M_{q_{0}}(\mathcal{T})=\sum_{Y_{1}, \ldots, Y_{p} \in \mathbf{P}(\Lambda)} \mathbb{1}\left\{\mathbf{z} \in Y_{q_{0}}\right\}\left(\prod_{\{i, j\} \in \mathcal{T}} \mathbb{1}\left\{Y_{i} \cap Y_{j} \neq \emptyset\right\}\right)\left(\prod_{i=1}^{p}\left|z\left(Y_{i}\right)\right|\right) .
$$

By the same argument as for inequality (1) one has

$$
M_{q_{0}}(\mathcal{T}) \leq\|z\|^{p} \times d_{q_{0}}!\times \prod_{\substack{i=1 \\ i \neq q_{0}}}^{p}\left(d_{i}-1\right)!
$$

The only difference is that one has to use q_{0} as a root for the recursive leaf summation procedure, and one does not have to pay a large volume factor $|\Lambda|$ at the last stage of summing over $Y_{q_{0}}$. This last sum is done by

$$
\begin{aligned}
& \sum_{Y_{q_{0}} \in \mathbf{P}(\Lambda)} \mathbb{1}\left\{\mathbf{z} \in Y_{q_{0}}\right\}\left|Y_{q_{0}}\right|^{d_{q_{0}}} \times\left|z\left(Y_{q_{0}}\right)\right| \\
& \quad \leq \sum_{Y_{q_{0}} \in \mathbf{P}(\Lambda)} \mathbb{1}\left\{\mathbf{z} \in Y_{q_{0}}\right\} d_{q_{0}}!e^{\left|Y_{q_{0}}\right|}\left|z\left(Y_{q_{0}}\right)\right| \\
& \quad \leq\|z\| \times d_{q_{0}}!
\end{aligned}
$$

where there is no factor of $|\Lambda|$.

Then we proceed with the same bounds as before, this time making use of the left over $\frac{1}{p}$ to beat the sum over q_{0} from 1 to p. In sum, we get

$$
\begin{aligned}
\Gamma_{0} & \leq\|z\|+\sum_{p \geq 2}\|z\|^{p} \times 2^{2 p-3} \\
& \leq \sum_{p \geq 1}(4\|z\|)^{p}
\end{aligned}
$$

and the result follows.

Remark 3 The important feature of this lemma is that the bound it provides is uniform in Λ, so it still holds if we work on the infinite lattice \mathbb{Z}^{d} instead of a finite volume Λ.

References

[1] C. Cammarota. Decay of correlations for infinite range interactions in unbounded spin systems. Comm. Math. Phys. 85 (1982), no. 4, 517-528.
[2] R. Fernández and A. Procacci. Cluster expansion for abstract polymer models. New bounds from an old approach. Comm. Math. Phys. 274 (2007), no. 1, 123-140.
[3] C. Gruber and H. Kunz. General properties of polymer systems. Comm. Math. Phys. 22 (1971), 133-161.
[4] R. Kotecký and R. Preiss. Cluster expansion for abstract polymer models. Comm. Math. Phys. 103 (1986), no. 3, 491-498.
[5] O. Penrose. Convergence of fugacity expansions for classical systems. In "Statistical Mechanics, Foundations and Applications", T. A. Bak, ed., IUPAP Meeting, Copenhagen, 1966. Benjamin Inc., New York, 1967, pp. 101-109.
[6] G.-C. Rota. On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 21964 340-368 (1964).
[7] B. Simon. The statistical mechanics of lattice gases. Vol. I. Princeton Series in Physics. Princeton University Press, Princeton, NJ, 1993.
[8] R. P. Stanley. Enumerative combinatorics. Vol. I. With a foreword by Gian-Carlo Rota. The Wadsworth \& Brooks/Cole Mathematics Series. Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, CA, 1986.

